簡易檢索 / 詳目顯示

研究生: 陳弘耀
Hung-Yao Chen
論文名稱: 鈦酸鉛鍶鐵電薄膜之特性研究及其在場效應鐵電記憶體上的應用
Characterization of (Pb1-x,Srx)TiO3 thin films for field effect transistor type ferroelectric random access memory applications
指導教授: 吳振名
Jenn-Ming Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 中文
論文頁數: 208
中文關鍵詞: 鐵電薄膜鈦酸鉛鍶鐵電記憶體
外文關鍵詞: ferroelectric thin films, strontium lead titanate, ferroelectric random access memory (FeRAM)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈦酸鉛鍶 [(Pb1-x,Srx)TiO3 (PST)] 是一種屬於鈦酸鉛 (PbTiO3) 系統分支的材料之一,其具有不錯的鐵電極化特性而且晶格常數中的c/a比例較PbTiO3來的小,可以減輕晶體成長時過多額外應變的產生。由於PST薄膜中Pb/Sr含量的比例是決定薄膜性質的主要因素 (依照不同的Pb/Sr比,PST可以是鐵電相或順電相),因此PST薄膜具有作為高頻調變性元件及鐵電記憶體應用的潛力。在本論文的研究中,鐵電相的PST薄膜以射頻磁控濺鍍的方式鍍製而成並且對於其各項結構特性與電性進行分析探討。
    當以Pt/Ti/SiO2/Si作為基板鍍製PST薄膜時,PST薄膜的c/a比例會隨著薄膜中Sr含量的增加或W摻雜量的增加而減小。不同成份組成的PST薄膜其表面形貌、介電性質、漏電流性質及鐵電性質亦被加以分析。其中,PST(x=0.6) 薄膜具有極佳的介電常數調變性而 PST(x=0.2) 薄膜具有較佳的鐵電特性。而摻雜W 的PST薄膜由於W取代Ti的晶格位置有效的減少晶體中氧空缺的含量,因此薄膜的疲勞特性獲得顯著的改善。
    以PST 薄膜作為鐵電層及ZrO2 (或ZrO2/SiON)薄膜作為絕緣層所製作的金屬/鐵電層/絕緣層/半導體 (MFIS) 結構在本研究中被用來探討作為電晶體形式鐵電記憶體應用的可行性。在絕緣層搭配一層極薄的SiON薄膜可以有效的防止電荷注入 (charge injection) 的情形發生並且有助於MFIS結構獲得較大的記憶視窗 (memory window)。另外,當使用較厚的PST薄膜作為MFIS結構的鐵電層時亦可獲得較大的記憶視窗。在論文中,依據以PST薄膜製成的MFIS結構所測得的電容-電壓 (C-V) 特性與漏電流傳導機制,影響MFIS結構記憶特性的電荷注入現象亦被加以描述與進行探討。


    The (Pb1-x,Srx)TiO3 (PST) material is a kind of modified PbTiO3. It has a small c/a ratio which reduces unfavorable lattice strain so that it possesses an appropriate ferroelectric polarization. The property of PST thin films highly depends on the composition of the Pb/Sr ratio with potential for applications in high frequency tunable devices and non-volatile ferroelectric random access memory (FeRAM). In this dissertation, the structural and electrical properties of PST ferroelectric thin films fabricated by RF magnetron sputtering were investigated.
    When the PST thin films were deposited on Pt/Ti/SiO2/Si substrates, the c/a ratio of the crystal structure was found to decrease with the increase of Sr content and W doping. The surface morphology, dielectric properties, leakage currents, and ferroelectric properties of PST thin films with various compositions were examined. The PST(x=0.6) films display excellent tunable dielectric properties, which the PST(x=0.2) films present the best ferroelectric properties. The W-doped PST films exhibit remarkable improvement of fatigue endurance because the substitution of W for Ti compensates oxygen vacancies effectively.
    For the field effect transistor FeRAM (FET-type FeRAM) applications, the metal/ferroelectric/insulator/semiconductor (MFIS) structure with PST thin films as the ferroelectric layer and ZrO2 (or ZrO2/SiON) thin films as the insulating layer were fabricated. The ultra-thin SiON layer is found to suppress the charge injection effectively and is helpful to obtain a larger memory window. The MFIS structure with thicker PST thin films possesses a larger memory window. The occurrence of charge injection is briefly described and discussed by the capacitance-voltage (C-V) property and the conduction mechanism of PST-based MFIS structures.

    ABSTRACT(Chinese) ………………………………………Ⅰ ABSTRACT (English)………………………………………Ⅲ ACKNOWLEDGEMENT…………………………………Ⅴ CONTENTS…………………………………………………Ⅶ LIST OF TABLES………………………………………ⅩⅣ LIST OF FIGURES………………………………………ⅩⅥ CHAPTER 1. Introduction………………………………1 1.1 Overview of ferroelectric materials …………………………1 1.2 Strontium lead titanate, (Pb1-x,Srx)TiO3 (PST) ………………4 1.3 Motivation and objective of this research……………………6 CHAPTER 2. Background Study………………………15 2.1 Emerging non-volatile memories ……………………………15 2.2 Ferroelectric random access memory (FeRAM) ……………18 2.2.1 Conventional capacitor-type FeRAM…………………19 2.2.1.1 Basic operation of ferroelectric capacitors……………………19 2.2.1.2 Reliability of ferroelectric capacitors…………………………21 2.2.1.3 Common materials for conventional capacitor-type FeRAM ……………………………………………………………………22 2.2.2 Field effect transistor FeRAM (FET-type FeRAM) …23 2.2.2.1 Operation principles of FET-type FeRAM……………………25 2.2.2.2 Current bottlenecks of FET-type FeRAM……………………26 2.2.2.3 Optimization of materials and device structures……………28 2.2.3 Other types of FeRAM…………………………………30 2.3 High-κ gate dielectric materials……………………………31 2.3.1 Choice of high-κ dielectric materials…………………32 2.3.2 Silicon oxynitride (SiOxNy or SiON) ……………………34 2.3.3 Zirconium oxide (ZrO2) …………………………………36 CHAPTER 3. Experimental procedure…………………55 3.1 Substrate preparation………………………………………55 3.1.1 Pt/Ti/SiO2/Si substrates……………………………………55 3.1.2 Pre-treatment of bare Si substrates………………………55 3.1.3 SiON/Si substrates…………………………………………56 3.2 Fabrication of ZrO2 thin films………………………………57 3.2.1 Deposition of ZrO2 thin films………………………………57 3.2.2 Heat treatments……………………………………………57 3.3 Fabrication of (Pb,Sr)TiO3 thin films………………………58 3.3.1 Preparation of (Pb,Sr)TiO3 targets…………………………58 3.3.2 Deposition of (Pb,Sr)TiO3 thin films………………………58 3.4 Fabrication of top electrode…………………………………59 3.5 Characteristic measurements………………………………60 3.5.1 Structure analysis……………………………………………60 3.5.1.1 X-ray diffraction (XRD) and Grazing-incidence X-ray diffraction (GIXD) ………………………………………………60 3.5.1.2 Field Emission Scanning Electron Microscopy (FESEM) ……60 3.5.1.3 High Resolution Transmission Electron Microscopy (HRTEM) …………………………………………………………61 3.5.1.4 Atomic Force Microscopy (AFM) ………………………………61 3.5.2 Compositional depth profile and quantification…………62 3.5.2.1 Secondary Ion Mass Spectroscopy (SIMS) ……………………62 3.5.2.2 X-ray Photoelectron Spectroscopy (XPS) ………………………62 3.5.3 Electrical properties…………………………………………63 3.5.3.1 Ferroelectric properties………………………………………63 3.5.3.2 Dielectric properties: Capacitance vs. Frequency………………64 3.5.3.3 Dielectric properties: Capacitance vs. Voltage (C-V) …………65 3.5.3.4 Leakage current…………………………………………………77 CHAPTER 4. Characteristics of (Pb,Sr)TiO3 thin films with various Sr content…………………75 4.1 Introduction……………………………………………………75 4.2 Experiments…………………………………………………77 4.3 Results and discussion………………………………………79 4.3.1 Composition analysis of PST films…………………………79 4.3.2 Crystal structure and microstructure of PST films………79 4.3.3 Dielectric and ferroelectric properties of PST films………80 4.3.4 Leakage current properties of PST films…………………82 4.4 Conclusion……………………………………………………85 CHAPTER 5. Characteristics of W-doped (Pb0.8,Sr0.2)TiO3 thin films…………………………………95 5.1 Introduction…………………………………………………95 5.2 Experiments…………………………………………………97 5.3 Results and discussion………………………………………98 5.3.1 Composition analysis of W-doped PST films……………98 5.3.2 Crystal structure and microstructure of W-doped PST films…………………………………………………………98 5.3.3 Dielectric and ferroelectric properties of W-doped PST films…………………………………………………………99 5.3.4 Leakage current properties of W-doped PST films……103 5.4 Conclusion……………………………………………………105 CHAPTER 6. Characteristics of (Pb0.8,Sr0.2)TiO3/ZrO2 structures on Si and SiON/Si substrates………………………………117 6.1 Introduction…………………………………………………117 6.2 Experiments…………………………………………………119 6.3 Results and discussion………………………………………121 6.3.1 Characteristics of Pt/ZrO2/(SiON)/Si structure…………121 6.3.2 Crystal structure and microstructure of PST/ZrO2/(SiON)/Si structures……………………………123 6.3.3 Capacitance-voltage (C-V) properties of Pt/PST/ZrO2/(SiON)/Si structures………………………124 6.3.4 Leakage current properties of Pt/PST/ZrO2/Si structures…………………………………………………126 6.4 Conclusion……………………………………………………127 CHAPTER 7. Characteristics of Pt/(Pb0.8,Sr0.2)TiO3/ZrO2/Si structures with different thickness of ferroelectric films………………………………………141 7.1 Introduction…………………………………………………141 7.2 Experiments…………………………………………………143 7.3 Results and discussion………………………………………145 7.3.1 Characteristics of Pt/ZrO2/Si structure…………………145 7.3.2 Crystal structure and microstructure of PST/ZrO2/Si structures…………………………………………………146 7.3.3 Capacitance-voltage (C-V) properties of Pt/PST/ZrO2/Si structures…………………………………………………147 7.3.4 Leakage current properties of Pt/PST/ZrO2/Si structures…………………………………………………151 7.4 Conclusion……………………………………………………154 CHAPTER 8. Conclusions………………………………169 Appendix. Lead barium zirconate ferroelectric films with ZrO2 buffer layer for non-volatile memory applications…………………………………173 References…………………………………………………193 Publication…………………………………………………207

    1. L. E. Cross and R. E Newnham, Ceramics and Civilization Vol. Ⅲ, p.289, Am. Ceram. Soc. (1987).
    2. G. H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).
    3. M. Lines and A. Glass, Principles and Applications of Ferroelectrics and Related Devices, p. 87, Clarendon Press, Oxford, 87 (1977).
    4. J.F. Scott, C.A. Araujo, Science 246, 1400 (1989).
    5. R. Ramesh, S. Aggarwal, and O. Auciello, Mater. Sci. Eng. 32, 191 (2001).
    6. D. Dimos, and C. H. Mueller, Annu. Rev. Mater. Sci. 28, 397 (1998).
    7. http://www.piceramic.com/piezoeffekt1.html
    8. T. Ikeda, J. Phys. Soc. Jpn. 14, 1290 (1959).
    9. T. Fujii. and M. Adachi, Jpn. J. Appl. Phys. 44, 692 (2005).
    10. S. Subrahmanyam and E. Goo, Acta mater. 46, 817 (1998).
    11. V. G. Gavrilyachenko, R. I. Spinko, M. A. Martynenko, and E. G. Fesenko, Sov. Phys. Solid State 12, 1203 (1970).
    12. G. Shirane, R. Pepinsky, and B. Frazier, Acta Crys. 9, 131 (1956).
    13. N. Nagao, T. Takeuchi, K. Iijima, Jpn. J. Appl. Phys. 32, 4065 (1993).
    14. D. Bao, N. Mizutani, X. Yao, and L. Zhang, Appl. Phys. Lett. 77, 1041 (2000).
    15. R. Poyato, M. Alguero, M. L. Calzada, and L. Pardo, J. Appl. Phys. 98, 024117 (2005).
    16. N. V. Giridharan and R. Jayavel, Mater. Lett. 52, 57 (2002).
    17. X. G. Tang, Q. F. Zhou, and J. X. Zhang, Thin Solid Films 375, 159 (2000).
    18. J. Mendiola, R. Jimenez, P. Ramos, C. Alemany, I. Bretos, and M. L. Calzada, J. Appl. Phys. 98, 024106 (2005).
    19. Y. K. Kim, K. S. Lee, and S. Baik, J. Mater. Res. 16, 2463 (2001).
    20. H. J. Chung and S. I. Woo, J. Vac. Sci. Technol. B 19, 275 (2001).
    21. T. Karaki, J. Du, T. Fujii, and M. Adachi, Jpn. J. Appl. Phys. 41, 6761 (2002).
    22. S. W. Liu, Y. Lin, J. Weaver, W. Donner, X. Chen, C. L. Chen, J. C. Jiang, E. I. Meletis and A. Bhalla, Appl. Phys. Lett. 85, 3202 (2004).
    23. M. Jain, N. K. Karan, R. S. Katiyar, A. S. Bhalla, F. A. Miranda and F. W. Van Keuls, Appl. Phys. Lett. 85, 275 (2004).
    24. X. T. Li, P. Y. Du, C. L. Mak, and K. H. Wong, Appl. Phys. Lett. 90, 262906 (2007).
    25. J. Yang, J. Chu, and M. Shen, Appl. Phys. Lett. 90, 242908 (2007).
    26. K. T. Kim and C. I. Kim, J. Vac. Sci. Technol. B 22, 2615 (2004).
    27. F. M. Pontes, S. H. Leal, M. R. M. C. Santos, E. R. Leite, E. Longo, L. E. B. Soledade, A. J. Chiquito, M. A. C. Machado, and J. A. Varela, Appl. Phys. A: Mater. Sci. Process. 80, 875 (2005).
    28. J. L. Wang, Y. S. Lai, B. S. Chiou, H. Y. Tseng, C. C. Tsai, C. P. Juan, C. K. Jan, and H. C. Cheng, J. Phys.: Condens. Matter. 18, 10457 (2006).
    29. J. L. Wang, Y. S. Lai, T. G. Lee, B. S. Chiou, C. C. Tsai, H. Y. Tseng, C. K. Jan, and H. C. Cheng, J. Phys. D: Appl. Phys. 40, 254 (2007).
    30. A. Fazio, Mater. Res. Soc. Symp. Proc. 830, D1.1 (2005).
    31. J. S. Moodera, G. Mathon, J. Magn. Magn. Mater. 200, 248 (1999).
    32. S. S. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, J. Appl. Phys. 85, 5828 (1999).
    33. G. Prinz, Science 282, 1660 (1998).
    34. G. Muller, N. Nagel, C. U. Pinnow, and T. Rohr, Solid-State Circuit Conf., 2003. (ESSCIRC '03). The 29th European Proc. 16-18, 37 (2003).
    35. M. Durlam, D. Addie, J. Akerman, B. Butcher, P. Brown, J. Chan, M. DeHerrera, B. N. Engel, B. Feil, G. Grynkewich, J. Janesky, M. Johnson, K. Kyler, J. Molla, J. Martin, K. Nagel, J. Ren, N. D. Rizzo, T. Rodriguez, L. Savtchenko, J. Salter, J. M. Slaugher, K. Smith, J. J. Sun, M. Lien, K. Papworth, P. Shah, W. Qin, R. Williams, L. Wise, and S. Tehrani, IEDM Tech. Dig. 995 (2003).
    36. S. Tehrani, J. Slaughter, M. Deherrera, B. Engel, N. Rizzo, J. Salter, M. Durlam, R. Dave, J. Janesky, B. Butcher, K. Smith, G. Grynkewich, IEEE Proc. 91, 703 (2003).
    37. J. Maimon, E. Spall, R. Quinn, and S. Schnur, IEEE Proc. Aerospace Conf. 5, 2289 (2001).
    38. I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, and M. Wuttig, J. Appl. Phys. 87, 4130 (2000).
    39. R. Bez and A. Pirovano, Mater. Sci. Semicon. Proc. 7, 349 (2004).
    40. S. Lai and T. Lowrey, IEDM, Digest International 803 (2001).
    41. Q. Liu, N. J. Wu and A. Ignatiev, Appl. Phys. Lett. 76, 2749 (2000).
    42. W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burnaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Liu, N. J. Wu and A. Ignatiev, Int. Electron Devices Meet., Tech. Dig. 193 (2002).
    43. A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, Appl. Phys. Lett. 77, 139 (2000).
    44. Y. Arimoto and H. Ishiwara, MRS Bull. 29, 823 (2004).
    45. http://www.fujitsu.com
    46. W. L. Warren, D. Dimos, B. A. Tuttle, G. E. Pike, R. W. Schwartz, P. J. Clew, and D. C. McIntyre, J. Appl. Phys. 77, 6695 (1995).
    47. J. F. Scott, C. A. Araujo, H. B. Meadows, L. D. Mcmillan, and A. Shawabkeh, J. Appl. Phys. 66, 1444 (1989).
    48. I. Yoo and S. Desu, Phys. Status Solidi A 133, 565 (1992).
    49. M. Dawber and J. F. Scott, Appl. Phys. Lett. 76, 1060 (2000).
    50. J. F. Scott, C. A. Araujo, B. M. Melnick, L. D. McMillan, and R. Zuleeg, J. Appl. Phys. 70, 382 (1991).
    51. C. Brennan, Ferroelectrics 150, 199 (1993).
    52. R. R. Mehta, B. D. Silverman and J. T. Jacobs, J. Appl. Phys. 44, 3379 (1973).
    53. J.M.Benedetto, R. A. Moore and F. B. McLean, J. Appl.Phys. 75, 460 (1994).
    54. Z. G. Zhang, Y. N. Wang, J. S. Zhu, F. Yan, X. M. Lu, H. M. Shen and J. S. Liu, Appl. Phys. Lett. 73, 3674 (1998).
    55. I. G. Jenkins, T. K. Song, S. Madhukar, A. S. Prakash, S. Aggarwal and R. Ramesh, Appl. Phys. Lett. 72, 3300 (1998).
    56. Q. Su, T. A. Rabson, and M. Robert, Integ. Ferroelec. 18, 415 (1997).
    57. J. F. Scott, Ferroelectric Memories, p. 4, Springer, New York (2000).
    58. J. Hong, H. W. Song, H. C. Lee, W. J. Lee, and K. No, J. Appl. Phys. 90, 1692 (2001).
    59. E. G. Lee, Dirk J. Wouters, Geert Willems, and Herman E. Maes, Appl. Phys. Lett. 70, 2404 (1997).
    60. C. S. Liang, J. M. Wu, and M. C. Chang, Appl. Phys. Lett. 81, 3624 (2002).
    61. S. G. Yoon, A. I. Kingon, and S. H. Kim, J. Appl. Phys. 88, 6690 (2000).
    62. S. Y. Chen, C. L. Sun, J. Appl. Phys. 90, 2970 (2001).
    63. G. Asano, T. Oikawa, H. Funakubo and K. Saito, Jpn. J. Appl. Phys. 34, L1083 (2003).
    64. K. Maki, B. T. Liu, H. Vu, V. Nagarajan, R. Ramesh, Y. Fujimori, T. Nakamura, and H. Takasu, Appl. Phys. Lett. 82, 1263 (2003).
    65. Z. Huang, Q. Zhang, and R. W. Whatmore, J. Appl. Phys. 85, 7355 (1999).
    66. G. J. Norga, Laura Fe`, D. J. Wouters, and H. E. Maes, Appl. Phys. Lett. 76, 1318 (2000).
    67. T. Nakamura, Y. Nakao, A. Kamisawa and H. Takasu, Jpn. J. Appl. Phys. 34, 5184 (1995).
    68. M. S. Chen, T.B. Wu, J.M. Wu, Appl. Phys. Lett. 68, 1430 (1996).
    69. C. A. Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott and J.F. Scott, Nature (London) 374, 627 (1995).
    70. S. B. Desu and D.P. Vijay, Mater. Sci. Engng. B 32, 75 (1995).
    71. Y. Ding, J. S. Liu, H. X. Qin, J. s. Zhu, and Wang, Appl. Phys. Lett. 78, 4175 (2001).
    72. J. K. Lee, C. H. Kim, H. S. Suh, and K. S. Hong, Appl. Phys. Lett. 80, 3593 (2002).
    73. M. W. Chu, M. Ganne, M. T. Caldes, and L. Brohan, J. Appl. Phys. 91, 3178 (2002).
    74. I. M. Ross, U.S. Pat. 2,791,760 (1957).
    75. S. Y. Wu, IEEE Trans. Electron Devices 21, 499 (1974).
    76. E. Tokumitsu, R. I. Nakamura, and H. Ishiwara, IEEE Electron Device Lett. 18, 160 (1997).
    77. Z. Xu, B. Kaczer, J. Johnson, D. Wouters, and G. Groeseneken, J. Appl. Phys. 96, 1614 (2004).
    78. B. C. Lan, J. J. Hsu, S. Y. Chen, and J. S. Bow, J. Appl. Phys. 94, 1877 (2003).
    79. B. E. Park, K. Takahashi, and H. Ishiwara, Appl. Phys. Lett. 85, 4448 (2004).
    80. J. P. Han, S. M. Koo, C. A. Richter, and E. M. Vogel, Appl. Phys. Lett. 85, 1439 (2004).
    81. P. C. Juan, Y. P. Hu, F. C. Chiu, and J. Y. M. Lee, J. Appl. Phys. 98, 044103 (2005).
    82. C. L. Sun, S. Y. Chen, S. B. Chen, and A. Chin, Appl. Phys. Lett. 80, 1984 (2002).
    83. T. Yoshimura, N. Fujimura, D. Ito, and T. Ito, J. Appl. Phys. 87, 3444 (2000).
    84. E. Tokumitsu, T. Isobe, T. Kijima, and H. Ishiwara, Jpn. J. Appl. Phys. 40, 5576 (2001).
    85. K. Ashikaga and T. Ito, J. Appl. Phys. 85, 7471 (1999)
    86. H. T. Lue, C. J. Wu, and T. Y. Tseng, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 5 (2003).
    87. M. Noda, K. Kodama, S. Kitai, M. Takahashi, T. Kanashima, and M. Okuyama, J. Appl. Phys. 93, 4137 (2003).
    88. E. Tokumitsu, G.. Fujii, and H. Ishiwara, Appl. Phys. Lett. 75, 575 (1999).
    89. K. Takahashi, K. Aizawa, B. E. Park, and H. Ishiwara, Jpn. J. Appl. Phys. 44, 6218 (2005).
    90. T. P. Ma and J. P. Han, IEEE Electron Device Lett. 23, 386 (2002).
    91. H. Ishiwara, Futur. Electron Device J., Japan 11, 27 (2000).
    92. J. P. Han, Mater. Res. Soc. Symp. Proc. 830, D2.5 (2005).
    93. N. Fujimura, T. Ishida, T. Yoshimura, and T. Ito, J. Appl. Phys. 69, 1011 (1996).
    94. T. Yoshimura, N. Fujimura, and T. Ito, Appl. Phys. Lett. 73, 414 (1998).
    95. K. H. Kim, IEEE Electron Device Lett. 19, 204 (1998).
    96. Y. Fujimori, N. Izumi, T. Nakamura, and A. Kamisawa, Jpn. J. Appl. Phys. 37, 5207 (1998).
    97. D. Takashima and I. Kunishima, IEEE J. Solid-State Circuits 33, 787 (1998).
    98. T. Nishihara and Y. Ito, ISSC Dig. Tech. Pap. 160 (2002).
    99. S. M. Yoon, H. Ishiwara, IEEE Trans. Electron. Dev. 48, 2002 (2001).
    100. A. G. Schrott and J. A. Misewich, Appl. Phys. Lett. 82, 4770 (2003).
    101. S. Mathews, R. Ramesh, T. Venkatesan, and J. Benedetto, Science 276, 238 (1997).
    102. W. K. Henson, N. Yang, S. Kubicek, E. M. Vogel, J. J. Wortman, K. D. Meyer, and A. Naem, IEEE Trans. Electron. Dev. 47, 1393 (2000).
    103. http://www.itrs.net/Links/2006Update/2006UpdateFinal.htm
    104. J. Robertson, Rep. Prog. Phys. 69, 327 (2006).
    105. J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000).
    106. S. Wolf, Silicon Processing for the VLSI Era Vol. 4: Deep-Submicron Process Technology, p. 146, 170, Lattice press, Sunset Beach CA (2002).
    107. J. Robertson, MRS Bull. 27, 217 (2002).
    108. J. D. Plummer and P. B. Griffin, Proc. IEEE 89, 240 (2001).
    109. H. J. Hubbard and D. G. Schlom, J. Mater. Res. 11, 2757 (1996).
    110. D. G. Schlom and J. H. Haeni, MRS Bull. 27, 198 (2002).
    111. S. Ohmi, M. Takeda, H. Ishiwara and H. Iwai, J. Electrochem. Soc. 151, G279 (2004).
    112. G. D. Wilk and P. M. Wallace, Appl. Phys. Lett. 74, 2854 (1999).
    113. H. Hwang, W. Ting, B. Maiti, D. L. Kwong, and J. Lee, Appl. Phys. Lett. 57, 1010 (1990).
    114. T. Hori, S. Akamatsu, and Y. Odake, IEEE Trans. Electron Devices 39, 118 (1992).
    115. W. L. Hill, E. M. Vogel, V. Misra, P. K. McLarty, and J. J. Wortman, IEEE Trans. Electron Devices 43, 15 (1996).
    116. T. Matsuoka, S. Taguchi, K. Taniguchi, C. Hamaguchi, S. Kakimoto, and J. Takagi, IEICE Trans. Electron. E78-C, 248 (1995).
    117. D. M. Brown, P. V. Gray, F. K. Heumann, H. R. Philipp, and E. A. Taft, J. Electrochem. Soc. 115, 311 (1968).
    118. K. A. Ellis and R. A. Buhrman, Appl. Phys. Lett. 74, 967 (1999).
    119. K. A. Ellis and R. A. Buhrman, J. Electrochem. Soc. 145, 2068 (1998).
    120. H. Yang and G. Lucovsky, Tech. Dig. Int. Electron Devices Meet., 245 (1999).
    121. H. T. Tang, W. N. Lennard, M. Zinke-Allmang, I. V. Mitchell, L. C. Feldman, M. L. Green, and D. Brasen, Appl. Phys. Lett. 64, 64 (1994).
    122. M. Bhat, L. K. Han, D. Wristers, J. Yan, D. L. Kwong, and J. Fulford, Appl. Phys. Lett. 66, 1225 (1995).
    123. D. Landheer, Y. Tao, D. X. Xu, G. I. Sproule, and D. A. Buchanan, J. Appl. Phys. 78, 1818 (1995).
    124. T. P. Ma, Appl. Surf. Sci. 117, 259 (1997).
    125. M. L. Green, D. Brasen, L. Feldman, E. Garfunkel, E. P. Gusev, T. Gustafsson, W. N. Lennard, H. C. Lu, and T. Sorsch, Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, E. Garfunkel, E. P. Gusev, and A. Y. Vul’, Eds., Kluwer Academic Publishers, Dordrecht Netherlands, p. 181 (1998).
    126. E. P. Gusev, H. C. Lu, E. L. Gargunkel, T. Gustafsson, and M. L. Green, IBM J. Res. Develop. 43, 265 (1999).
    127. K. J. Hubbard and D. G. Schlom, J. Mater. Res. 11, 2757 (1996).
    128. C. S. Hwang and H. J. Kim, J. Mater. Res. 8, 1361 (1993).
    129. T. Nagi, W. J. Qi, R. Sharma, J. Fretwell, X. Chen, J. C. Lee, and S. Banerjee, Appl. Phys. Lett. 76, 502 (2000).
    130. B. H. Lee, L. Kang, R. Nieh, W. J. Qi, and J. C. Lee, Appl. Phys. Lett. 76, 1926 (2000).
    131. Y. Ma, Y. Ono, L. Stecker, D. R. Evans, and S. T. Hsu, Tech. Dig. Int. Electron Devices Meet. 149 (1999).
    132. M. A. Cameron and S. M. George, Thin Solid Films 348, 90 (1999).
    133. L. Niinisto, M. Ritala, and M. Leskela, Mater. Sci. Eng., B 41, 23 (1996).
    134. G. D. Wilk, R. M. Walace, and J. M. Anthony, J. Appl. Phys. 87, 484 (2000).
    135. Y. Ma, Y. Ono, L. Stecker, D. R. Evans, and S. T. Hsu, IEDM Tech. Digest. 149 (1999).
    136. M. Houssa, M. Tuominen, M. Naili, V. Afans’ev, A. Stesmans, S. Haukka, and M. M. Heyns, J. Appl. Phys. 87, 8615 (2000).
    137. J. Shappir, A. Anis, and I Pinsky, IEEE Trans. Electron Devices ED-33, 442 (1986).
    138. RT-66A testing system Handbook, Radiant technologies Inc.
    139. G. D Wilk, R. M. Wallace, and J. M. Antony, J. Appl. Phys. 89, 5243 (2001).
    140. D. K. Schroder, Semiconductor Material and Device Characterization, 2nd ed., p. 356~372, John Wiley & Sons, New York (1995).
    141. D. K. Schroder, Semiconductor Material and Device Characterization, 2nd ed., p. 349, John Wiley & Sons, New York (1995).
    142. W. J. Lee, H.G. Kim, S.G. Yoon, J. Appl. Phys. 80, 5891 (1996).
    143. R. Waser, T. Baiatu, and K. H. Hardtl, J. Am. Ceram. Soc. 73, 1645 (1990).
    144. M. S. Tsai, S. C. Sun, and T. Y. Tseng, J. Appl. Phys. 82, 3482 (1997).
    145. K. Miura and M. Tanaka, Jpn. J. Appl. Phys. 35, 2719 (1996).
    146. V. C. Lo, J. Appl. Phys. 92, 6778 (2002).
    147. J. F. Scott, C. A. Paz de Araujo, B. M. Melnick, L. D. McMilan, and R. Zuleeg, J. Appl. Phys. 70, 382 (1991).
    148. S. Maruno, T. Murao, T. Kuroiwa, N. Mikami, A. Tomikawa, T. Nagata, T. Yasue, and T. Koshikawa, Jpn. J. Appl. Phys. 39, L416 (2000).
    149. Z. Zhang, L. Lu, C. Shu, and P. Wu, Appl. Phys. Lett. 89, 152909 (2006).
    150. C. S. Liang and J. M. Wu, J. Cryst. Growth 274, 173 (2005).
    151. T. Tani, Z. Xu, D. A. Payne, Mater. Res. Soc. Symp. Proc. 310, 269 (1993).
    152. L. Rayleigh, Philos. Mag. 23, 225 (1887).
    153. D. V. Taylor and D. Damjanovic, J. Appl. Phys. 82, 1973 (1997).
    154. O. Boser, J. Appl. Phys. 62, 1344 (1987).
    155. H. Sugiyama, T. Nakayiso, Y. Adachi, M. Noda and M. Okuyama, Jpn. J. Appl. Phys. 39, 2131 (2000).
    156. T. Choi, Y. S. Kim, C. W. Yang and J. Lee, Appl. Phys. Lett. 79, 1516 (2001).
    157. M. Copel, M. Gribelyuk, and E. Gusev, Appl. Phys. Lett. 76, 436 (2000).
    158. M. Takahashi, H. Sugiyama, T. Nakaiso, K. Kodama, M. Noda, and M. Okuyama, Jpn. J. Appl. Phys. 40, 2923 (2001).
    159. C. Y. Chang, T. P. Juan, and J. Y. Lee, Appl. Phys. Lett. 88, 072917 (2006).
    160. S. M. Sze, Physics of Semiconductor Device, 2nd ed., p.380, Wiley, New York (1981).
    161. Y. T. Kim, and D. S. Shin, Appl. Phys. Lett. 71, 3507 (1997).
    162. K. J. Choi, W. C. Shin, and S. G. Yoon, Thin Solid Films 384, 146 (2001).
    163. G. Shirane, Phys. Rev. 86, 219 (1952).
    164. G. Shirane, and S. Hoshino, Acta Crystallogr. 7, 203 (1954).
    165. J. H. Tseng, and T. B. Wu, Appl. Phys. Lett. 78, 1721 (2001).
    166. C. L. Hung,and T. B. Wu, J. Crystal Growth 274, 402 (2005).
    167. B. P. Pokharel, and D. Pandey, J. Appl. Phys. 88, 5364 (2000).
    168. S. K. Lee, Y. T. Kim, S. I. Kim, and C. E. Lee, J. Appl. Phys. 91, 9303 (2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE