研究生: |
陳義明 Chen, Yi Ming |
---|---|
論文名稱: |
利用時變電場即時地操控次微米液滴生成之研究 Electric-Field Induced Tip Streaming for Sub-Femtoliter Droplet Formation on Demand |
指導教授: |
蘇育全
Su, Yu Chuan |
口試委員: |
陳紹文
Chen, Shao Wen 趙自強 Zhao, Zi Qiang |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 微流體 、次微米液滴 |
外文關鍵詞: | sub-micron, droplet-microfluidic |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
液滴微流體系統近年來發展迅速,由於它有高通量、高反應速度和液滴操作的重複
性的優點,還能攜帶DNA、蛋白質、細胞及化學藥劑等,使得應用在化學分析和生醫檢測領域上有很大的潛力。本論文以液滴微流體做為微流道的基礎,將被動結合主動式元件,以調控時變電場達到即時地產生微液滴。微尺度下液體的行為表現為層流,不容易分裂成液滴。傳統上微流體多以壓力驅動的方式,藉由流道的幾何設計產生微液滴,但是液滴的尺寸受限於流道尺度,且缺乏精準性和即時地調控。為了改善此限制,本實驗以壓力驅動為被動式元件和氣動式坍塌閥門,加上電場的驅動為主動式元件。壓力驅動簡單亦調節和氣動式坍塌閥門控制流道幾何寬度,將雙相微流體達到tip-streaming 的穩定未產生液滴的模式,此時外加電場即可改變界面形狀,若達到臨界電場時,界面尖端處立即產生微液滴。製程方面利用微機電技術,以PDMS 雙層微結構為晶片基板,並以液態金屬合金EGaIn 作微電極,在低熔點溫度的被感應加熱,並注入微通道,以形成固體電極。本實驗中以不同斜率波形的電場,即時且穩定地產生不同大小之微液珠,在乳化過程是由所施加的壓力和電場,並且非常小液滴體積小於1 femtoliter 可以容易地產生和收集的控制。使用電壓斜波(0 至400V,0.05 秒為單位)跨越的距離施加6 毫米,產生直徑小於1 微米的液滴,即次微液珠。未來期望發展出可產生多樣化樣本且能即時控制微液珠大小之平台,將應用在醫療檢測、生物細胞、化學檢測等相關領域。
This thesis presents an electric-field triggered droplet formation scheme that is capable of producing sub-femtoliter droplets on demand. Pressure-driven flow focusing scheme is enhanced by a time-varying electric field, which acts against interfacial tension and causes the
breakup of droplets. More specifically, Maxwell stress is induced on the interface, where droplets are produced via tip streaming process. PDMS microfluidic devices with embedded solid electrodes are utilized to realize the proposed on-demand droplet formation scheme. In the prototype demonstration, low melting-temperature solder mixed with magnetic nanoparticles is inductively heated and injected into microchannel to form solid electrodes. Meanwhile, a diaphragm is mounted on top of the junction¸ which can be deformed pneumatically to adjust the channel geometries and therefore to control the droplet formation
process. It is demonstrated that the emulsification process is controlled by the applied pressures and electric field, and extremely-small droplets with volumes less than 1 femtoliter can be readily produced and collected. Using a voltage ramp (0 to 400 V in 0.05 seconds)applied across a distance of 6 mm, droplets of diameters less than 1 μm are produced. As such, the demonstrated microfluidic scheme could potentially realize the controllability on the formation of sub-femtoliter droplets, which are desired for a variety of chemical and biological applications.
1. chard P. eynman, “ There’s Plenty f m at the B tt m”
2. Todd M. Squires and Stephen R. Quake, “Microfluidic: Fluid physics at the nanoliter scale,” Reviews of Modern Physics, vol. 77, pp. 977-1026, 2005
3. Todd Thorsen, Richard W. Roberts, Frances H. Arnold, and Stephen R. Quake, “Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device,” Physcial review letters, vol. 86, pp. 4163-4166, 2001
4. Piotr Garstecki, Michael J. Fuerstman, Howard A. Stone and George M. Whitesides, “Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up,” Lab on a Chip, vol. 6, pp. 437-446, 2006
5. B.J. Briscoe, C.J. Lawrence, W.G.P. Mietus, “A review of immiscible fluid mixing,” Advances in Colloid and Interface Science, vol. 81, pp. 1-17, 1999
6. Shelley L. Anna, Nathalie Bontoux, and Howard A. Stone, “Formation of dispersions
78
us ng ‘‘fl w f cus ng’’ n m crochannels,” Applied Physics Letters, vol. 82, pp. 364-366, 2003
7. J. D. Sherwood, “Breakup of fluid droplets in electric and magnetic fields,” Journal of Fluid Mechanics, vol. 188, pp. 133-146, 1987
8. Fred K. Wohlhuter and Osman A. Basaran, “Shapes and stability of pendant and sessile dielectric drops in an electric field,” Journal of Fluid Mechanics, vol. 235, pp. 481-510, 1992
9. John S. Eow, Mojtaba Ghadiri, “Motion, deformation and break-up of aqueous drops in oils under high electric field strengths,” Chemical Engineering and Processing, vol. 42, pp. 259-272, 2003
10. Jong-Wook Ha and Seung-Man Yang, “Deformation and breakup of Newtonian and non-Newtonian conducting drops in an electric field,” Journal of Fluid Mechanics, vol. 405, pp. 131-156, 2000
11. Jong-Wook Ha and Seung-Man Yang, “Effect of Nonionic Surfactant on the Deformation and Breakup of a Drop in an Electric Field,” Journal of Colloid and Interface Science, vol. 206, pp. 195-204, 1998
12. S. N. Reznik, A. L. Yarin, A. Theron and E. Zussman, “Transient and steady shapes of droplets attached to a surface in a strong electric field,” Journal of Fluid Mechanics, vol. 516, pp. 349-377, 2004
13. bert T. C ll ns et al, “ lectr hydr dynam c t stream ng and em ss n f charged dr s fr m l qu d c nes”, Nature hys cs, Vol 4, February 2008
79
14. Darren R. Link, Erwan Grasland-Mongrain, Agnes Duri, Flavie Sarrazin, Zhengdong Cheng, Galder Cristobal, Manuel Marquez, and David A.Weitz, “Electric Control of Droplets in Microfluidic Devices,”Microreactors, vol. 45, pp. 2556-2560, 2006
15. Shi Cheng and Zhigang Wu, “Microfluidic electronics,” Lab on a Chip, vol. 12, pp. 2782-2791, 2012
16. Adam C. Siegel, Derek A. Bruzewicz, Douglas B. Weibel, and George M. Whitesides, “Microfluidic: Fabrication of Three-Dimensional Metallic Microstructures in Poly(dimethylsiloxane),” Adv. Mater, vol. 19, pp. 727-733, 2007
17. Hsueh-Ch a Chang, Lesl e Y. Ye , “ lectr k net cally Dr en cr flu d cs and Nan flu d cs” , Cambridge University Press , First published 2010
18. Knut Erik Teigen, and Svend Tollak Munkejord, “Influence of surfactant on drop deformation in an electric field,” Physics of Fluids, vol. 22, pp. 1-10, 2010
19. T m thy . nteer, “ lectr stat c Stress: ns ghtful nalys s and an ulat n f axwell's Stress quat n f r lectr stat cs”, Transact ns on Dielectrics and Electrical Insulation, Vol. 21, No. 1, February 2014
20. Paul R. Chiarot, Sergey I. Gubarenko, Ridha Ben Mrad, and Pierre Sullivan, “Application of an Equilibrium Model for an Electrified Fluid Interface—Electrospray Using a PDMS Microfluidic Device,” Journal of Microelectromechanical systems, vol. 17, pp. 1362-1375, 2008
21. Vincent Studer, Giao Hang, Anna Pandolfi, Michael Ortiz, W. French Anderson, and Stephen R. Quake, “Scaling properties of a low-actuation pressure microfluidic valve,”
80
Journal of Applied Physics, vol. 95, pp. 393-398, 2004
22. Marc A. Unger, Hou-Pu Chou, Todd Thorsen, Axel Scherer, Stephen R. Quake,“ Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography,” Scievce, vol. 288, pp. 113-116, 2000
23. Shanshi Huang , Qiaohong He, Hengwu Chen Jiang Huang, “Preparation of normally open microvalves with fluorinated ethylene propylene membrane and poly(methyl methacrylate)substrates,” Microfluid Nanofluid, vol. 14, pp. 329-335, 2013
24. Graeme Supeene, Charles R. Koch, Subir Bhattacharjee, “Deformation of a droplet in an electric field: Nonlinear transient response in perfect and leaky dielectric media,” Journal of Colloid and Interface Science, vol. 318, pp. 463-476, 2008
25. Thickness-Pengtao Yue , James J. Feng ,Chun Liu ,and J e Shen, “ d ffuse-interface method for simulating two- hase fl ws f c m lex flu ds”, J urnal f lu d ech., l. 515, pp. 293–317, 2004
26. Mobility-David Jacqm n, “Calculat n f Tw -Phase Navier–Stokes Flows Using Phase- eld del ng”, J urnal f C m utational Physics 155, 96–127, 1999
27. Bo-Chih Lin, Yu-Chuan Su, “On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves”, Micromech. Microeng., vol 18 pp.10, 2008
28. Yi-Ming Tseng, Jhih-Jhe Wang and Yu-Chuan Su, “A random-access microarray for programmable droplet storage, retrieval and manipulation”, Micromech. Microeng, vol. 22, pp.11,2012
81
29. Sheng-Chih Chang and Yu-Chuan Su, “On-demand micro-encapsulation utilizing on-chip synthesis of semi-permeable alginate-PLL capsules”, cr flu d Nan flu d , vol. 10, pp.1165–1174, 2011
30. 蔡欣憲,國立清華大學工程與系統科學系碩士論文,2012