研究生: |
陳亭安 Chen, Ting-An |
---|---|
論文名稱: |
超大環鍺酸鹽之合成、結構與性質研究 Exploration of Extra-Large Channel Germanates : Syntheses, Structures and Properties |
指導教授: |
王素蘭
Wang, Sue-Lein |
口試委員: |
黃暄益
Huang, Hsuan-Yi 林嘉和 Lin, Chia-Her |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 118 |
中文關鍵詞: | 微孔孔洞材料 、超大環結構 、鍺酸鹽 、水穩定性 |
外文關鍵詞: | Microporous materials, Extra-large channel structure, Germanate, Water stability |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用中溫中壓水熱法進行反應,開發出三個具新穎性的鍺酸鹽化合物。此系統中所合成的三個化合物,皆是以Ge7團簇建構而成的純鍺酸鹽結構,化學式分別為[Ni(1,2-DAP)3](HDMA)[Ge7O14(OH)F2]・H2O (A1)、[Ni(1,2-DAP)3][H2(1,2-DAP)]2[Ge14O28F6]・2H2O・2DMA (A2)、(H2DAP)3[Ge21O42F6(H2O)2]・2TREN (A3)。所有化合物的鑑定方式都是以單晶X光繞射儀收集數據後進行結構解析,並針對每個化合物在合成條件控制及性質測量上做深入的探討。
A1是屬於二維層狀的結構,當提升A1反應條件中氫氟酸的莫耳數時,則引導出同樣是由Ge7團簇以T4連結模式,所建構形成具有二十四員環的一維管狀A2結構。A2是目前擁有最大環數的一維管狀無機骨架結構,不僅具有低的骨架密度 (FD = 7.3 Ge/1000 Å3),也展現出二氧化碳的氣體吸附能力。另外,若微調反應條件並移除鎳金屬及改以加入TREN有機胺分子,將生成類似NTHU-3擬中性層的二維層狀結構,進一步降低反應條件中氫氟酸的莫耳數時,則引導出A3結構。A3是文獻中第一個由Ge7團簇以T4P2連結模式,所建構形成具有十八員環的三維鍺酸鹽結構,並且於Ge7團簇建構單元中,不僅存在罕見的μ3-F,其中一個鍺氧四面體會額外連接一個配位水,使得該四面體被扭曲形成鍺氧雙三角錐,以上的配位形式在鍺酸鹽結構中目前皆是首例。
A1與A3皆具備鍺酸鹽結構中罕見的水穩定性,可浸泡於水中一週不致結構瓦解,具有潛在的應用性。透過觀察有機胺模板在鍺酸鹽無機骨架上的排列情形,可歸納出當水穩定性不佳的鍺酸鹽無機骨架,藉由被有機胺模板上的親油性碳原子所保護時,將使得整體結構具備良好的水穩定性,此發現亦解決以往鍺酸鹽結構相較於矽酸鹽結構水穩定性不佳的問題。
綜合上述,本論文在策略性的實驗設計下,成功合成得到兩個具有超大孔隧的鍺酸鹽結構,這些化合物不論是在結構上或性質上都能有創新的表現,且後續仍有許多值得繼續往深處挖掘的潛力存在。
In this thesis, three new crystalline germanate structures were synthesized under the mild hydrothermal reaction. These three structures were built up exclusively by Ge7 clusters. The formulas are [Ni(1,2-DAP)3](HDMA)[Ge7O14(OH)F2]•H2O (A1), [Ni(1,2-DAP)3][H2(1,2-DAP)]2[Ge14O28F6]•2H2O•2DMA (A2), and (H2DAP)3[Ge21O42F6(H2O)2]•2TREN (A3). All structures were characterized by single crystal X-ray diffraction and their physical properties were also measured.
A1 is a two-dimensional layered structure and A2 is a novel one-dimensional nanotubular structure, synthesized via increasing the amount of hydrofluoric acid in the same reaction condition initially for A1. Both of them show Ge7 clusters in T4 connection mode. For the first time, the channel size of inorganic tubule is pushed up to the largest 24-membered ring. Not only the structure of A2 exhibits the low framework density (FD = 7.3 Ge/1000 Å3) but also the highest CO2 adsorption property in germanate. Further investigations into the reaction of A2 by removing the nickel source and adding tris(2-aminoethyl)amine(TREN) resulted in the formation of an analogue of NTHU-3. When the amount of hydrofluoric acid in this reaction mixture was reduced, it caused a new phase A3 to emerge as a major-phased product. It is worth noting that A3 represents the first three-dimensional 18R-channel structure built solely by Ge7 clusters in T4P2 connection mode. More interestingly, the unique μ3-fluoride ion was located in the center of the Ge7 cluster and one tetrahedron was observed to have a coordination water, deforming to a trigonal bipyramid. The above coordination is the first case in germanate structures.
The structures of A1 and A3 exhibited extreme stability, steeping in water for one week without hydrolysis. Base on the arrangement of the organic template along the inorganic framework, it can be concluded that when the inorganic framework is protected by the organic template with the lipophilic carbon atom, the overall structure will display good water stability. The finding unveils a prospect toward resolving the labile nature of germanates compared to the more rigid silicate structures.
In this research, two crystalline germanate structures with extra-large channels have been developed by strategic experiments, and both structures and properties of all compounds are creative and inspiring. More possibilities on these systems for continuing further investigation are promising in future.
第一章 緒論
[1] (a) Breck, D. W. Zeolite Molecular Sieves: Structure, Chemistry and Use, 1974, J. Wiley and Sons, New York; (b) J. M. Thomas, R. Raja, G. Sankar, R. G. Bell, Nature 1999, 398, 227; (c) R. D. Miller, Science 1999, 286, 421-423; (d) T. J. Meurig, Angew. Chem. Int. Ed. 1999, 38, 3588-3628; (e) S. M. Kuznicki, V. A. Bell, S. Nair, H. W. Hillhouse, R. M. Jacubinas, C. M. Braunbarth, B. H. Toby, M. Tsapatsis, Nature 2001, 412, 720; (f) M. E. Davis, Nature 2002, 417, 813; (g) M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, Science 2002, 295, 469-472; (h) P. M. Forster, J. Eckert, J.-S. Chang, S.-E. Park, G. Férey, A. K. Cheetham, J. Am. Chem. Soc. 2003, 125, 1309-1312; (i) K. Susumu, K. Ryo, N. Shin‐ichiro, Angew. Chem. Int. Ed. 2004, 43, 2334-2375; (j) R. Murugavel, A. Choudhury, M. G. Walawalkar, R. Pothiraja, C. N. R. Rao, Chem. Rev. 2008, 108, 3549-3655.
[2] A. F. Cronstedt, Akad handl. Stockholm 1756, 17, 120.
[3] H. d. S. C. Deville, Sci 1862, 54, 324.
[4] S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, E. M. Flanigen, J. Am. Chem. Soc. 1982, 104, 1146-1147.
[5] (a) L. Jing, L. Jiyang, Y. Jihong, C. Peng, F. Qianrong, S. Fuxing, X. Ruren, Angew. Chem. 2006, 118, 2608-2610; (b) B. Insan, S. Frank, S. Gerd, K. Rüdiger, Chemistry – A European Journal 2001, 7, 834-839; (c) A. S. T. E., Angew. Chem. Int. Ed. 2005, 44, 4836-4838; (d) C. Bonneau, J. Sun, R. Sanchez-Smith, B. Guo, D. Zhang, A. K. Inge, M. Edén, X. Zou, Inorg. Chem. 2009, 48, 9962-9964.
[6] L. Zhi‐En, Y. Guo‐Yu, Eur. J. Inorg. Chem. 2010, 2010, 2895-2902.
[7] J. Cheng, R. Xu, G. Yang, J. Chem. Soc., Dalton Trans. 1991, 1537-1540.
[8] (a) Z. Yaming, Z. Haoguo, C. Zhenxia, C. Minqin, X. Yan, Z. Haoyu, Z. Dongyuan, Angew. Chem. 2001, 113, 2224-2226; (b) J. Plévert, T. M. Gentz, A. Laine, H. Li, V. G. Young, O. M. Yaghi, M. O'Keeffe, J. Am. Chem. Soc. 2001, 123, 12706-12707.
[9] (a) X. Zou, T. Conradsson, M. Klingstedt, M. S. Dadachov, M. O'Keeffe, Nature 2005, 437, 716; (b) X. Ren, Y. Li, Q. Pan, J. Yu, R. Xu, Y. Xu, J. Am. Chem. Soc. 2009, 131, 14128-14129.
[10] L. Jie, S. Jie, L. Xiaodan, W. Yingxia, Z. Haoquan, C. Hong, Z. Xiaodong, L. Jianhua, S. Junliang, Angew. Chem. 2015, 127, 7398-7402.
[11] H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402, 276.
[12] D. Maspoch, D. Ruiz-Molina, J. Veciana, Chem. Soc. Rev. 2007, 36, 770-818.
[13] (a) L. J. Murray, M. Dinca, J. R. Long, Chem. Soc. Rev. 2009, 38, 1294-1314; (b) S. S. Han, J. L. Mendoza-Cortes, W. A. Goddard Iii, Chem. Soc. Rev. 2009, 38, 1460-1476; (c) M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330-1352.
[14] (a) C.-H. Lin, S.-L. Wang, K.-H. Lii, J. Am. Chem. Soc. 2001, 123, 4649-4650; (b) C.-H. Lin, Y.-C. Yang, C.-Y. Chen, S.-L. Wang, Chem. Mater. 2006, 18, 2095-2101.
[15] Y.-C. Liao, F.-L. Liao, W.-K. Chang, S.-L. Wang, J. Am. Chem. Soc. 2004, 126, 1320-1321.
[16] Y.-C. Liao, Y.-C. Jiang, S.-L. Wang, J. Am. Chem. Soc. 2005, 127, 12794-12795.
[17] Y.-C. Liao, C.-H. Lin, S.-L. Wang, J. Am. Chem. Soc. 2005, 127, 9986-9987.
[18] Y.-L. Lai, K.-H. Lii, S.-L. Wang, J. Am. Chem. Soc. 2007, 129, 5350-5351.
[19] Y.-C. Yang, S.-L. Wang, J. Am. Chem. Soc. 2008, 130, 1146-1147.
[20] P. C. Jhang, Y. C. Yang, Y. C. Lai, W. R. Liu, S. L. Wang, Angew. Chem. 2009, 121, 756-759.
[21] S. H. Huang, C. H. Lin, W. C. Wu, S. L. Wang, Angew. Chem. 2009, 121, 6240-6243.
[22] P. C. Jhang, N. T. Chuang, S. L. Wang, Angew. Chem. Int. Ed. 2010, 49, 4200-4204.
[23] H. Shu‐Hao, W. Sue‐Lein, Angew. Chem. Int. Ed. 2011, 50, 5319-5322.
[24] Y.-C. Chang, S.-L. Wang, J. Am. Chem. Soc. 2012, 134, 9848-9851.
[25] H.-Y. Lin, C.-Y. Chin, H.-L. Huang, W.-Y. Huang, M.-J. Sie, L.-H. Huang, Y.-H. Lee, C.-H. Lin, K.-H. Lii, X. Bu, S.-L. Wang, Science 2013.
[26] H. Hui‐Lin, W. Sue‐Lein, Angew. Chem. Int. Ed. 2015, 54, 965-968.
[27] M.-J. Sie, C.-H. Lin, S.-L. Wang, J. Am. Chem. Soc. 2016, 138, 6719-6722.
[28] Y.-C. Liang, Y.-J. Lo, RSC Advances 2017, 7, 29428-29439.
[29] G. D. Stucky, M. L. F. Phillips, T. E. Gier, Chem. Mater. 1989, 1, 492-509.
[30] A. R. West, Solid state chemistry and its applications, John Wiley & Sons, 2014.
[31] J. J. W., J. A. J., Angewandte Chemie International Edition in English 1983, 22, 412-413.
[32] E. R. Cooper, C. D. Andrews, P. S. Wheatley, P. B. Webb, P. Wormald, R. E. Morris, Nature 2004, 430, 1012.
[33] R. Albrecht, Angewandte Chemie International Edition in English 1985, 24, 1026-1040.
[34] A. Corma, F. Rey, J. Rius, M. J. Sabater, S. Valencia, Nature 2004, 431, 287.
[35] 王素蘭,科儀新知,民國九十四年二月第二十六卷第四
[36] APEX II software package; Bruker AXS, Madison, WI, 2008.
[37] G. M. Sheldrick, SHELXTL programs, Release Version 5.1; Bruker
AXS, Madison, WI, 1998.
[38] I. D. Brown, D. Altermann, Acta Crystallogr. 1985, B41, 244.
[39] L. Spek, Acta Crystallogr. 1990, A46, 34.
第二章 超大環鍺酸鹽之合成、結構與性質研究
[1] S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, E. M. Flanigen, J. Am. Chem. Soc. 1982, 104, 1146-1147.
[2] (a) M. Estermann, L. B. McCusker, C. Baerlocher, A. Merrouche, H. Kessler, Nature 1991, 352, 320; (b) G.-Y. Yang, S. C. Sevov, J. Am. Chem. Soc. 1999, 121, 8389-8390; (c) G. Nathalie, G. Qiuming, F. P. M., C. Jong‐San, N. Marc, P. Sang‐Eon, F. Gérard, C. A. K., Angew. Chem. Int. Ed. 2001, 40, 2831-2834; (d) C.-H. Lin, S.-L. Wang, K.-H. Lii, J. Am. Chem. Soc. 2001, 123, 4649-4650; (e) X. Zou, T. Conradsson, M. Klingstedt, M. S. Dadachov, M. O'Keeffe, Nature 2005, 437, 716; (f) Y.-L. Lai, K.-H. Lii, S.-L. Wang, J. Am. Chem. Soc. 2007, 129, 5350-5351; (g) J. Sun, C. Bonneau, Á. Cantín, A. Corma, M. J. Díaz-Cabañas, M. Moliner, D. Zhang, M. Li, X. Zou, Nature 2009, 458, 1154; (h) L. Jie, S. Jie, L. Xiaodan, W. Yingxia, Z. Haoquan, C. Hong, Z. Xiaodong, L. Jianhua, S. Junliang, Angew. Chem. 2015, 127, 7398-7402.
[3] H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402, 276.
[4] H.-Y. Lin, C.-Y. Chin, H.-L. Huang, W.-Y. Huang, M.-J. Sie, L.-H. Huang, Y.-H. Lee, C.-H. Lin, K.-H. Lii, X. Bu, S.-L. Wang, Science 2013.
[5] L. Zhi‐En, Y. Guo‐Yu, Eur. J. Inorg. Chem. 2010, 2010, 2895-2902.
[6] K. E. Christensen, L. Shi, T. Conradsson, T.-z. Ren, M. S. Dadachov, X. Zou, J. Am. Chem. Soc. 2006, 128, 14238-14239.
[7] Q. Pan, J. Li, X. Ren, Z. Wang, G. Li, J. Yu, R. Xu, Chem. Mater. 2008, 20, 370-372.
[8] X. Ren, Q. Pan, J. Liu, Y. Li, F. Wang, J. Li, Y. Xu, L. Li, CrystEngComm 2014, 16, 9545-9554.
[9] L. Shi, K. E. Christensen, K. Jansson, J. Sun, X. Zou, Chem. Mater. 2007, 19, 5973-5979.
[10] C.-M. Wang, C.-H. Lin, C.-W. Yang, K.-H. Lii, Inorg. Chem. 2010, 49, 5783-5785.
[11] L. Guang‐Zhen, Z. Shou‐Tian, Y. Guo‐Yu, Angew. Chem. Int. Ed. 2007, 46, 2827-2830.
[12] (a) Z. Yaming, Z. Haoguo, C. Zhenxia, C. Minqin, X. Yan, Z. Haoyu, Z. Dongyuan, Angew. Chem. 2001, 113, 2224-2226; (b) J. Plévert, T. M. Gentz, A. Laine, H. Li, V. G. Young, O. M. Yaghi, M. O'Keeffe, J. Am. Chem. Soc. 2001, 123, 12706-12707; (c) X. Ren, Y. Li, Q. Pan, J. Yu, R. Xu, Y. Xu, J. Am. Chem. Soc. 2009, 131, 14128-14129.
[13] L. Shi, C. Bonneau, Y. Li, J. Sun, H. Yue, X. Zou, Crystal Growth & Design 2008, 8, 3695-3699.
[14] A. K. Inge, K. E. Christensen, T. Willhammar, X. Zou, Crystal Growth & Design 2016, 16, 6967-6973.
[15] J. Plévert, T. M. Gentz, T. L. Groy, M. O'Keeffe, O. M. Yaghi, Chem. Mater. 2003, 15, 714-718.
[16] N. N. Julius, A. Choudhury, C. N. R. Rao, J. Solid State Chem. 2003, 170, 124-129.
[17] L. A. Villaescusa, M. A. Camblor, Chem. Mater. 2016, 28, 7544-7550.
[18] Y. Pauleau, J.-C. Remy, Journal of the Less Common Metals 1975, 42, 199-208.
[19] Q. B. Nguyen, K.-H. Lii, Inorg. Chem. 2012, 51, 9150-9152.
[20] S. Zhao, P. Gong, S. Luo, S. Liu, L. Li, M. A. Asghar, T. Khan, M. Hong, Z. Lin, J. Luo, J. Am. Chem. Soc. 2015, 137, 2207-2210.
[21] P. C. Jhang, Y. C. Yang, Y. C. Lai, W. R. Liu, S. L. Wang, Angew. Chem. 2009, 121, 756-759.
[22] Y.-C. Liao, Y.-C. Jiang, S.-L. Wang, J. Am. Chem. Soc. 2005, 127, 12794-12795.
[23] R. Xiaoyan, L. Jiancong, L. Yi, Y. Jihong, Z. Anorg. Allg. Chem. 2012, 638, 1362-1364.
[24] Tang, M. S. Dadachov, Zou, Chem. Mater. 2005, 17, 2530-2536.
[25] (a) P. Eliasova, M. Opanasenko, P. S. Wheatley, M. Shamzhy, M. Mazur, P. Nachtigall, W. J. Roth, R. E. Morris, J. Cejka, Chem. Soc. Rev. 2015, 44, 7177-7206; (b) W. J. Roth, P. Nachtigall, R. E. Morris, P. S. Wheatley, V. R. Seymour, S. E. Ashbrook, P. Chlubná, L. Grajciar, M. Položij, A. Zukal, O. Shvets, J. Čejka, Nature Chemistry 2013, 5, 628.