研究生: |
裴翠娜 Sterbova, Petra |
---|---|
論文名稱: |
利用核磁共振光譜分析石斑魚神經壞死病毒鞘蛋白外突出結構之動態與分子機制 An NMR investigation of the molecular mechanism of grouper nervous necrosis virus protrusion dynamics |
指導教授: |
章為皓
Chang, Wei-Hau 蘇士哲 Sue, Shih-Che |
口試委員: |
張七鳳
Chang, Chi-Fon 張 雯 Chang, Wen 陳佩燁 Chen, Rita Pei-Yeh 吳育騏 Wu, Yu-Chi Eugene |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 126 |
中文關鍵詞: | 核磁共振光譜 、蛋白結構 、病毒突起結構域 、pH敏感蛋白 、神經壞死病毒 |
外文關鍵詞: | nuclear magnetic resonance spectroscopy, protein structure, viral protrusion domain, pH sensitivity, nervous necrosis virus |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由神經壞死病毒(nervous necrosis virus; NNV)引起的病毒性腦病及視網膜病(viral encephalopathy and retinopathy; VER)爆發對魚類養殖業造成了毀滅性的影響。NNV是一種來自Nodaviridae科的簡單無套膜病毒,其殼蛋白的表面包含了六十個獨特的突起。這些突起對病毒與宿主細胞的相互作用以及病毒的感染性至關重要。NNV外殼上的突起利用唾液酸來附著於細胞表面,並透過胞吞作用進入細胞。然而,對於明確的感染機制以及病毒與宿主相互作用的資訊仍然缺乏,使得抗病毒策略的開發困難重重。
NNV表面的突起結構是由外殼蛋白的三個突起結構域(protrusion domain;P-domain)所組成。現有的NNV結構顯示,這些突起結構在病毒表面上具有高動態性,且P-domain在NNV表面採取多重的構型。為了解釋NNV 感染過程中P-domain的構型資訊,我們利用核磁共振光譜分析從石斑魚NNV殼蛋白序列中分離的P-domain蛋白(胺基酸214-338)在溶液中的構型,並藉由調整酸鹼值(pH值)來模擬不同的感染階段。研究結果顯示了P-domain對pH值的敏感,在低pH環境下會引發構型變化並伴隨自我組裝。而對於以單體(monomer)形式存在於中性pH值溶液中的P-domain,依據光譜所推定的結構顯示出一個先前未識別的口袋結構,該結構以一個高活動性的長肽環(胺基酸311-330)所勾勒而出。分子對接分析顯示,該口袋結構中的胺基酸殘基可與唾液酸的末段相互作用。進一步的分子動力學模擬顯示,該口袋結構中的部分胜肽在酸性條件下轉變為β鏈,並促成形變後的P-domain形成三聚體。此外,我們發現連接P-domain和NNV外殼的鏈結蛋白在低pH值下進行不同構型間的轉換。鏈結蛋白的可塑性歸因於位於鏈結蛋白和P-domain連接處的脯胺酸(P221)發生順反異構化。
我們的研究結果揭示了NNV病毒表面突起結構因pH值變化所引發的構型轉換機制,並提供了有關病毒與宿主之間相互作用的結構新見解,此研究成果對於開發針對NNV的抗病毒水產養殖策略至關重要。
The outbreaks of viral encephalopathy and retinopathy (VER) caused by nervous necrosis virus (NNV) have had a devastating impact on the fish farming industry. NNVs are small non enveloped viruses from Nodaviridae family. The NNV capsid contains sixty distinct protrusions on the virus particle surface. These protrusions are essential for virus interactions with host cells and virus infectivity. The NNV protrusions bind to sialic acid to attach to the cell surface and to initiate virus entry to cells via endocytosis, however our understanding of the infection mechanism and virus-host interactions critical for anti-viral strategies development is limited.
The protrusions on the NNV surface are formed by three protrusion domains (P domain) of the capsid protein. The available structures of NNV revealed that protrusions are highly dynamic on the virus surface and indicated that P-domain adopts different configurations on the NNV surface. To gain an understanding of the P-domain conformations underlying NNV infection, we studied the isolated P-domain (aa 214-338) of dragon grouper NNV in solution using nuclear magnetic resonance (NMR) in pH conditions mimicking different stages of virus entry. Our results revealed that the P-domain is pH sensitive and undergoes low-pH-induced conformational change coupled with self-assembly. The P-domain is monomer at neutral pH and the determined solution structure of the P-domain monomer revealed a long flexible loop in the P-domain (amino acids 311-330) outlining a previously unidentified pocket. Molecular docking analysis showed that the terminal sialic acid inserted into this pocket and formed interactions with conserved residues delineating the binding pocket. Molecular dynamics (MD) simulations showed that part of this loop converted to a β strand under acidic conditions. This new P-domain conformation allowed formation of P domain trimer. Additionally, we discovered that a flexible linker connecting the P-domain to NNV shell interconverts between different conformations at low pH. The malleability of the linker is attributed to a cis-trans isomerisation of peptidyl bond of P221 located at the junction between linker and the P-domain. Our findings have uncovered novel pH-dependent conformational switching mechanisms underlying NNV protrusion dynamics, and have provided new structural insights into complex NNV-host interactions critical for development of strategies against NNV in aquaculture.
Adachi, K., Ichinose, T., Takizawa, N., Watanabe, K., Kitazato, K., & Kobayashi, N. (2007). Inhibition of betanodavirus infection by inhibitors of endosomal acidification. Archives of Virology, 152(12), 2217-2224.
Azad, K., & Banerjee, M. (2019). Structural dynamics of nonenveloped virus disassembly Intermediates. Journal of virology, 93(22).
Bandín, I., & Souto, S. (2020). Betanodavirus and VER disease: A 30-year research review. Pathogens (Basel, Switzerland), 9(2), 106.
Banerjee, M., Speir, J. A., Kwan, M. H., Huang, R., Aryanpur, P. P., Bothner, B., & Johnson, J. E. (2010). Structure and function of a genetically engineered mimic of a nonenveloped virus entry intermediate. Journal of virology, 84(9), 4737-4746.
Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1), 43-56.
Binbuga, B., Boroujerdi, A. F., & Young, J. K. (2007). Structure in an extreme environment: NMR at high salt. Protein Science, 16(8), 1783-1787.
Brudar, S., & Hribar-Lee, B. (2021). Effect of buffer on protein stability in aqueous solutions: A simple protein aggregation model. The Journal of Physical Chemistry B, 125(10), 2504-2512.
Byeon, I.-J. L., Meng, X., Jung, J., Zhao, G., Yang, R., Ahn, J., Shi, J., Concel, J., Aiken, C., Zhang, P., & Gronenborn, A. M. (2009). Structural convergence between cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function. Cell, 139(4), 780-790.
Cann, A. J. (2008). Replication of viruses. In B. W. J. Mahy & M. H. V. Van Regenmortel (Eds.), Encyclopedia of Virology (Third Edition) (pp. 406-412). Academic Press.
Chang, J.-S., & Chi, S.-C. (2015). GHSC70 is involved in the cellular entry of nervous necrosis virus. Journal of virology, 89(1), 61-70.
Chen, N.-C., Yoshimura, M., Guan, H.-H., Wang, T.-Y., Misumi, Y., Lin, C.-C., Chuankhayan, P., Nakagawa, A., Chan, S. I., Tsukihara, T., Chen, T.-Y., & Chen, C.-J. (2015). Crystal structures of a piscine betanodavirus: Mechanisms of capsid assembly and viral infection. PLoS pathogens, 11(10), e1005203-e1005203.
Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G., & Thompson, J. D. (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research, 31(13), 3497-3500.
Correia, J., & Stafford, W. (2009). Chapter 15 Extracting equilibrium constants from kinetically limited reacting systems. Methods in enzymology, 455, 419-446.
Crane, M., & Hyatt, A. (2011). Viruses of fish: An overview of significant pathogens. Viruses, 3(11), 2025-2046.
Dahal, Y. R., & Schmit, J. D. (2018). Ion specificity and nonmonotonic protein solubility from salt entropy. Biophysical Journal, 114(1), 76-87.
Dam, J., & Schuck, P. (2004). Calculating sedimentation coefficient distributions by direct modeling of sedimentation velocity concentration profiles. In Methods in enzymology (Vol. 384, pp. 185-212). Academic Press.
de Vries, S. J., van Dijk, M., & Bonvin, A. M. J. J. (2010). The HADDOCK web server for data-driven biomolecular docking. Nature Protocols, 5(5), 883-897.
Dimitrov, D. S. (2004). Virus entry: molecular mechanisms and biomedical applications. Nature Reviews Microbiology, 2(2), 109-122.
Doan, Q. K., Vandeputte, M., Chatain, B., Morin, T., & Allal, F. (2017). Viral encephalopathy and retinopathy in aquaculture: a review. Journal of Fish Diseases, 40(5), 717-742.
Dolinsky, T. J., Czodrowski, P., Li, H., Nielsen, J. E., Jensen, J. H., Klebe, G., & Baker, N. A. (2007). PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Research, 35(suppl_2), W522-W525.
Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577-8593.
Farnum, M., & Zukoski, C. (1999). Effect of glycerol on the interactions and solubility of bovine pancreatic trypsin inhibitor. Biophysical Journal, 76(5), 2716-2726.
Fenner, B. J., Thiagarajan, R., Chua, H. K., & Kwang, J. (2006). Betanodavirus B2 is an RNA interference antagonist that facilitates intracellular viral RNA accumulation. Journal of virology, 80(1), 85-94.
Fernández, C., & Wider, G. (2003). TROSY in NMR studies of the structure and function of large biological macromolecules. Current Opinion in Structural Biology, 13(5), 570-580.
Fernández, C., & Wider, G. (2006). NMR spectroscopy of large biological macromolecules in solution. In J. L. R. Arrondo & A. Alonso (Eds), Advanced techniques in biophysics (Vol. 10, pp. 89-128), Springer.
Foster, M. P., McElroy, C. A., & Amero, C. D. (2007). Solution NMR of large molecules and assemblies. Biochemistry, 46(2), 331-340.
Gentry, R. R., Froehlich, H. E., Grimm, D., Kareiva, P., Parke, M., Rust, M., Gaines, S. D., & Halpern, B. S. (2017). Mapping the global potential for marine aquaculture. Nature Ecology & Evolution, 1(9), 1317-1324.
Glazebrook, J. S., Heasman, M. P., & de Beer, S. W. (1990). Picorna-like viral particles associated with mass mortalities in larval barramundi, Lates calcarifer Bloch. Journal of Fish Diseases, 13(3), 245-249.
Gore, S., Sanz García, E., Hendrickx, P. M. S., Gutmanas, A., Westbrook, J. D., Yang, H., Feng, Z., Baskaran, K., Berrisford, J. M., Hudson, B. P., Ikegawa, Y., Kobayashi, N., Lawson, C. L., Mading, S., Mak, L., Mukhopadhyay, A., Oldfield, T. J., Patwardhan, A., Peisach, E., . . . & Kleywegt, G. J. (2017). Validation of structures in the Protein Data Bank. Structure, 25(12), 1916-1927.
Greenfield, N. J. (2006). Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 1(6), 2876-2890.
Gye, H. J., & Nishizawa, T. (2022). Analysis of sialylated N-linked glycans on fish cell lines permissive to nervous necrosis virus for predicting cellular receptors of the virus. Aquaculture, 555, 738198.
Harrison, Joseph S., Higgins, Chelsea D., O’Meara, Matthew J., Koellhoffer, Jayne F., Kuhlman, Brian A., & Lai, Jonathan R. (2013). Role of electrostatic repulsion in controlling pH-dependent conformational changes of viral fusion proteins. Structure, 21(7), 1085-1096.
Herrmann, T., Torres, R., Salgado, E. N., Berciu, C., Stoddard, D., Nicastro, D., Jenni, S., & Harrison, S. C. (2021). Functional refolding of the penetration protein on a non-enveloped virus. Nature, 590(7847), 666-670.
Ho, C. S., Lam, C. W., Chan, M. H., Cheung, R. C., Law, L. K., Lit, L. C., Ng, K. F., Suen, M. W., & Tai, H. L. (2003). Electrospray ionisation mass spectrometry: principles and clinical applications. The Clinical Biochemist Reviews, 24(1), 3-12.
Hu, L., Salmen, W., Chen, R., Zhou, Y., Neill, F., Crowe, J. E., Atmar, R. L., Estes, M. K., & Prasad, B. V. V. (2022). Atomic structure of the predominant GII.4 human norovirus capsid reveals novel stability and plasticity. Nature Communications, 13(1), 1241.
Hu, Y., Cheng, K., He, L., Zhang, X., Jiang, B., Jiang, L., Li, C., Wang, G., Yang, Y., & Liu, M. (2021). NMR-based methods for protein analysis. Analytical Chemistry, 93(4), 1866-1879.
Hu, Y. B., Dammer, E. B., Ren, R. J., & Wang, G. (2015). The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Translational Neurodegeneration, 4, 18.
Huang, P.-L., Afero, F., Chang, Y., Chen, B.-Y., Lan, H.-Y., Hou, Y.-L., & Huang, C.-T. (2023). The bioeconomic analysis of hybrid giant grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) and green grouper (Epinephelus malabaricus): A case study in Taiwan. Fishes, 8(12), 610.
Huang, R., Zhu, G., Zhang, J., Lai, Y., Xu, Y., He, J., & Xie, J. (2017). Betanodavirus-like particles enter host cells via clathrin-mediated endocytosis in a cholesterol-, pH- and cytoskeleton-dependent manner. Veterinary Research, 48(1), 8.
Ito, Y., Okinaka, Y., Mori, K. I., Sugaya, T., Nishioka, T., Oka, M., & Nakai, T. (2008). Variable region of betanodavirus RNA2 is sufficient to determine host specificity. Diseases of aquatic organisms, 79(3), 199-205.
Iwamoto, T., Mise, K., Takeda, A., Okinaka, Y., Mori, K.-I., Arimoto, M., Okuno, T., & Nakai, T. (2005). Characterization of striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. The Journal of general virology, 86, 2807-2816.
Iwamoto, T., Okinaka, Y., Mise, K., Mori, K.-I., Arimoto, M., Okuno, T., & Nakai, T. (2004). Identification of host-specificity determinants in betanodaviruses by using reassortants between striped jack nervous necrosis virus and sevenband grouper nervous necrosis virus. Journal of virology, 78(3), 1256-1262.
Johnson, B. A., & Blevins, R. A. (1994). NMR View: A computer program for the visualization and analysis of NMR data. Journal of Biomolecular NMR, 4(5), 603-614.
Johnson, K. L., & Moore, J. S. (2021). Nodaviruses of invertebrates and fish (Nodaviridae). In D. H. Bamford & M. Zuckerman (Eds.), Encyclopedia of Virology (Fourth Edition) (pp. 819-826). Academic Press.
Kalia, M., & Jameel, S. (2011). Virus entry paradigms. Amino Acids, 41(5), 1147-1157.
Kampmann, T., Mueller, D. S., Mark, A. E., Young, P. R., & Kobe, B. (2006). The role of histidine residues in low-pH-mediated viral membrane fusion. Structure, 14(10), 1481-1487.
Kelly, S. M., & Price, N. C. (2000). The use of circular dichroism in the investigation of protein structure and function. Current Protein and Peptide Science, 1(4), 349-384.
Koonin, E. V., Krupovic, M., & Agol, V. I. (2021). The Baltimore classification of viruses 50 years later: How does it stand in the light of virus evolution? Microbiology and Molecular Biology Reviews, 85(3), e0005321.
Krishnan, R., Kim, J.-O., Kim, J.-O., Qadiri, S. S. N., Kim, S.-J., & Oh, M.-J. (2019). Immunoglobulin-like cell adhesion molecules, nectins - Characterization, functional prediction and expression profiling from seven-band grouper, Hyporthodus septemfasciatus. Aquaculture, 506, 387-393.
Krishnan, R., Qadiri, S. S. N., & Oh, M.-J. (2019). Functional characterization of seven-band grouper immunoglobulin like cell adhesion molecule, Nectin4 as a cellular receptor for nervous necrosis virus. Fish & Shellfish Immunology, 93, 720-725.
Krissinel, E., & Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology, 372(3), 774-797.
Kühlbrandt, W. (2014). The resolution revolution. Science, 343(6178), 1443-1444.
Kumar, C. S., Dey, D., Ghosh, S., & Banerjee, M. (2018). Breach: Host membrane penetration and entry by nonenveloped viruses. Trends in Microbiology, 26(6), 525-537.
Lin, J., Pozharski, E., & Wilson, M. A. (2017). Short carboxylic acid-carboxylate hydrogen bonds can have fully localized protons. Biochemistry, 56(2), 391-402.
Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 78, 1950 - 1958.
Liu, W., Hsu, C.-H., Hong, Y.-R., Wu, S.-C., Wang, C.-H., Wu, Y.-M., Chao, C.-B., & Lin, C.-S. (2005). Early endocytosis pathways in SSN-1 cells infected by dragon grouper nervous necrosis virus. Journal of General Virology, 86(9), 2553-2561.
Louten, J. (2016a). Chapter 2 - Virus structure and classification. In J. Louten (Ed.), Essential Human Virology (pp. 19-29). Academic Press.
Louten, J. (2016b). Chapter 4 - Virus replication. In J. Louten (Ed.), Essential Human Virology (pp. 49-70). Academic Press.
Maciejewski, M. W., Schuyler, A. D., Gryk, M. R., Moraru, II, Romero, P. R., Ulrich, E. L., Eghbalnia, H. R., Livny, M., Delaglio, F., & Hoch, J. C. (2017). NMRbox: A resource for biomolecular NMR computation. Biophysical Journal, 112(8), 1529-1534.
Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954-9960.
Martínez, L., Andrade, R., Birgin, E. G., & Martínez, J. M. (2009). PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 30(13), 2157-2164.
McInnes, C., Grothe, S., O'Connor-McCourt, M., & Sykes, B. D. (2000). NMR study of the differential contributions of residues of transforming growth factor alpha to association with its receptor. Protein Engineering, Design and Selection, 13(3), 143-147.
Mercer, J., Schelhaas, M., & Helenius, A. (2010). Virus entry by endocytosis. Annual Review of Biochemistry, 79(1), 803-833.
Miao, S., & Tang, H.-C. (2002). Bioeconomic analysis of improving management productivity regarding grouper Epinephelus malabaricus farming in Taiwan. Aquaculture, 211(1), 151-169.
Micsonai, A., Wien, F., Bulyáki, É., Kun, J., Moussong, É., Lee, Y. H., Goto, Y., Réfrégiers, M., & Kardos, J. (2018). BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Research, 46(W1), W315-w322.
Micsonai, A., Wien, F., Kernya, L., Lee, Y.-H., Goto, Y., Réfrégiers, M., & Kardos, J. (2015). Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proceedings of the National Academy of Sciences, 112(24), E3095-E3103.
Mori, K.-I., Nakai, T., Muroga, K., Arimoto, M., Mushiake, K., & Furusawa, I. (1992). Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology, 187(1), 368-371.
Mugimba, K. K., Byarugaba, D. K., Mutoloki, S., Evensen, Ø., & Munang’andu, H. M. (2021). Challenges and solutions to viral diseases of finfish in marine aquaculture. Pathogens (Basel, Switzerland), 10(6), 673.
NaveenKumar, S., Shekar, M., Karunasagar, I., & Karunasagar, I. (2013). Genetic analysis of RNA1 and RNA2 of Macrobrachium rosenbergii nodavirus (MrNV) isolated from India. Virus Research, 173(2), 377-385.
Naylor, R. L., Hardy, R. W., Buschmann, A. H., Bush, S. R., Cao, L., Klinger, D. H., Little, D. C., Lubchenco, J., Shumway, S. E., & Troell, M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591(7851), 551-563.
Nishizawa, T., Furuhashi, M., Nagai, T., Nakai, T., & Muroga, K. (1997). Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene. Applied and environmental microbiology, 63(4), 1633-1636.
Nishizawa, T., Lee, H. S., & Gye, H. J. (2023). Pocket structures of surface protrusions shared among serologically distinct nervous necrosis viruses (NNVs) were predicted in silico to bind to sialylated N-glycans, a host cellular receptor. Aquaculture, 565, 739157.
Nishizawa, T., Mori, K.-i., Furuhashi, M., Nakai, T., Furusawa, I., & Muroga, K. (1995). Comparison of the coat protein genes of five fish nodaviruses, the causative agents of viral nervous necrosis in marine fish. Journal of General Virology, 76(7), 1563-1569.
Odegard, A., Banerjee, M., & Johnson, J. E. (2010). Flock house virus: A model system for understanding non-enveloped virus entry and membrane penetration. In J. E. Johnson (Ed.), Cell Entry by Non-Enveloped Viruses (pp. 1-22). Springer Berlin Heidelberg.
Odegard, A. L., Kwan, M. H., Walukiewicz, H. E., Banerjee, M., Schneemann, A., & Johnson, J. E. (2009). Low endocytic pH and capsid protein autocleavage are critical components of Flock House virus cell entry. Journal of virology, 83(17), 8628-8637.
Padrós, F., Caggiano, M., Toffan, A., Constenla, M., Zarza, C., & Ciulli, S. (2022). Integrated management strategies for viral nervous necrosis (VNN) disease control in marine fish farming in the Mediterranean. Pathogens (Basel, Switzerland), 11(3), 330.
Parvez, M. K. (2020). Geometric architecture of viruses. World Journal of Virology, 9(2), 5-18.
Peter Schuck, H. Z. (2017). Exact description of ideally sedimenting associating systems. In Sedimentation Velocity Analytical Ultracentrifugation: Interacting Systems (pp. 297). CRC Press.
Philo, J. S. (2023). SEDNTERP: a calculation and database utility to aid interpretation of analytical ultracentrifugation and light scattering data. European Biophysics Journal, 52(4), 233-266.
Pierre, S., Gaillard, S., Prévot-D'Alvise, N., Aubert, J., Rostaing-Capaillon, O., Leung-Tack, D., & Grillasca, J.-P. (2008). Grouper aquaculture: Asian success and Mediterranean trials. Aquatic Conservation: Marine and Freshwater Ecosystems, 18(3), 297-308.
Pletan, M. L., & Tsai, B. (2022). Non-enveloped virus membrane penetration: New advances leading to new insights. PLoS pathogens, 18(12), e1010948.
Roberts, D., Keeling, R., Tracka, M., van der Walle, C. F., Uddin, S., Warwicker, J., & Curtis, R. (2015). Specific ion and buffer effects on protein–protein interactions of a monoclonal antibody. Molecular Pharmaceutics, 12(1), 179-193.
Rühle, V. (2008). Pressure coupling / barostats. Journal Club.
Ryu, W.-S. (2017). Chapter 3 - Virus life cycle. In W.-S. Ryu (Ed.), Molecular Virology of Human Pathogenic Viruses (pp. 31-45). Academic Press.
Sarkar, P., Reichman, C., Saleh, T., Birge, R. B., & Kalodimos, C. G. (2007). Proline cis-trans isomerization controls autoinhibition of a signaling protein. Molecular Cell, 25(3), 413-426.
Sattler, M., & Fesik, S. W. (1996). Use of deuterium labeling in NMR: overcoming a sizeable problem. Structure, 4(11), 1245-1249.
Schelhaas, M. (2010). Come in and take your coat off – how host cells provide endocytosis for virus entry. Cellular Microbiology, 12(10), 1378-1388.
Schneemann, A., Zhong, W., Gallagher, T. M., & Rueckert, R. R. (1992). Maturation cleavage required for infectivity of a nodavirus. Journal of virology, 66(11), 6728-6734.
Schwarzinger, S., Kroon, G. J., Foss, T. R., Wright, P. E., & Dyson, H. J. (2000). Random coil chemical shifts in acidic 8 M urea: implementation of random coil shift data in NMRView. Journal of Biomolecular NMR, 18(1), 43-48.
Schwieters, C. D., Kuszewski, J. J., & Marius Clore, G. (2006). Using Xplor–NIH for NMR molecular structure determination. Progress in Nuclear Magnetic Resonance Spectroscopy, 48(1), 47-62.
Shen, Y., & Bax, A. (2010). Prediction of Xaa-Pro peptide bond conformation from sequence and chemical shifts. Journal of Biomolecular NMR, 46(3), 199-204.
Shen, Y., Delaglio, F., Cornilescu, G., & Bax, A. (2009). TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. Journal of Biomolecular NMR, 44(4), 213-223.
Song, C., Takai-Todaka, R., Miki, M., Haga, K., Fujimoto, A., Ishiyama, R., Oikawa, K., Yokoyama, M., Miyazaki, N., Iwasaki, K., Murakami, K., Katayama, K., & Murata, K. (2020). Dynamic rotation of the protruding domain enhances the infectivity of norovirus. PLoS pathogens, 16(7), e1008619.
Stencel-Baerenwald, J. E., Reiss, K., Reiter, D. M., Stehle, T., & Dermody, T. S. (2014). The sweet spot: defining virus–sialic acid interactions. Nature Reviews Microbiology, 12(11), 739-749.
Suomalainen, M., & Greber, U. F. (2013). Uncoating of non-enveloped viruses. Current Opinion in Virology, 3(1), 27-33.
Tang, L., Lin, C.-S., Krishna, N. K., Yeager, M., Schneemann, A., & Johnson, J. E. (2002). Virus-like particles of a fish nodavirus display a capsid subunit domain organization different from that of insect nodaviruses. Journal of virology, 76(12), 6370-6375.
Tian, Y., Schwieters, C. D., Opella, S. J., & Marassi, F. M. (2014). A practical implicit solvent potential for NMR structure calculation. Journal of Magnetic Resonance, 243, 54-64.
Uchiyama, S., Noda, M., & Krayukhina, E. (2018). Sedimentation velocity analytical ultracentrifugation for characterization of therapeutic antibodies. Biophysical Reviews, 10(2), 259-269.
Voehler, M. W., Collier, G., Young, J. K., Stone, M. P., & Germann, M. W. (2006). Performance of cryogenic probes as a function of ionic strength and sample tube geometry. Journal of Magnetic Resonance, 183(1), 102-109.
Vogt, G., & Argos, P. (1997). Protein thermal stability: hydrogen bonds or internal packing? Folding and Design, 2, S40-S46.
Waldron, T. T., Schrift, G. L., & Murphy, K. P. (2005). The Salt-dependence of a protein–ligand interaction: Ion–protein binding energetics. Journal of Molecular Biology, 346(3), 895-905.
Walters, K. J., Ferentz, A. E., Hare, B. J., Hidalgo, P., Jasanoff, A., Matsuo, H., & Wagner, G. (2001). Characterizing protein-protein complexes and oligomers by nuclear magnetic resonance spectroscopy. Methods in Enzymolology, 339, 238-258.
Wang, C. H., Chen, D. H., Huang, S. H., Wu, Y. M., Chen, Y. Y., Hwu, Y., Bushnell, D., Kornberg, R., & Chang, W. H. (2021). Sub-3 Å cryo-EM structures of necrosis virus particles via the use of multipurpose TEM with electron counting camera. International Journal of Molecular Sciences, 22(13).
Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., & Barton, G. J. (2009). Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9), 1189-1191.
Wedemeyer, W. J., Welker, E., & Scheraga, H. A. (2002). Proline cis−trans isomerization and protein folding. Biochemistry, 41(50), 14637-14644.
Williamson, M. P. (2013). Using chemical shift perturbation to characterise ligand binding. Progress in Nuclear Magnetic Resonance Spectroscopy, 73, 1-16.
Wishart, D. S., & Sykes, B. D. (1994). The 13C chemical-shift index: A simple method for the identification of protein secondary structure using 13C chemical-shift data. Journal of Biomolecular NMR, 4(2), 171-180.
Wong, M., Khirich, G., & Loria, J. P. (2013). What’s in your buffer? Solute altered Millisecond motions detected by solution NMR. Biochemistry, 52(37), 6548-6558.
Wu, W., Celma, C. C., Kerviel, A., & Roy, P. (2019). Mapping the pH sensors critical for host cell entry by a complex nonenveloped virus. Journal of virology, 93(4).
Xia, X., Wu, W., Cui, Y., Roy, P., & Zhou, Z. H. (2021). Bluetongue virus capsid protein VP5 perforates membranes at low endosomal pH during viral entry. Nature Microbiology, 6(11), 1424-1432.
Xie, J., Li, K., Gao, Y., Huang, R., Lai, Y., Shi, Y., Yang, S., Zhu, G., Zhang, Q., & He, J. (2016). Structural analysis and insertion study reveal the ideal sites for surface displaying foreign peptides on a betanodavirus-like particle. Veterinary Research, 47(1), 16.
Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics, 32(23), 3676-3678.
Zhang, W., Jia, K., Jia, P., Xiang, Y., Lu, X., Liu, W., & Yi, M. (2020). Marine medaka heat shock protein 90ab1 is a receptor for red-spotted grouper nervous necrosis virus and promotes virus internalization through clathrin-mediated endocytosis. PLoS pathogens, 16(7), e1008668.
Zhang, X., Patel, A., Celma, C. C., Yu, X., Roy, P., & Zhou, Z. H. (2016). Atomic model of a nonenveloped virus reveals pH sensors for a coordinated process of cell entry. Nature Structural & Molecular Biology, 23(1), 74-80.
Zhang, Y., Cui, Y., Sun, J., & Zhou, Z. H. (2022). Multiple conformations of trimeric spikes visualized on a non-enveloped virus. Nature Communications, 13(1), 550.