簡易檢索 / 詳目顯示

研究生: 賴柏維
Lai, Po-Wei
論文名稱: 以次毫米高密度氮氣靶實現之一兆瓦雷射射尾流場電子加速
Laser Wakefield Acceleration Driven By One Terawatt Laser Pulses in Sub-Millimeter Dense Nitrogen Gas Target
指導教授: 林明緯
Lin, Ming-Wei
口試委員: 周紹暐
Liu, Yao-Li
劉耀澧
Chou, Shao-Wei
學位類別: 碩士
Master
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 47
中文關鍵詞: 雷射尾場加速自我聚焦效應自我調變機製游離誘導電子注入機制電漿密度斜坡電子注入機制
外文關鍵詞: Laser Wakefield Acceleration, self-focusing effect, self-modulation effect, ionization-induced injection, down ramp injection
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷射尾場加速可藉由將數兆瓦雷射脈衝聚焦於高密度的薄氣靶來實現。在此情況下,於雷射脈衝內實現的自我聚焦效應(self-focusing effect)可進一步縮小脈衝的橫向尺寸,而自我調變機製(self-modulation effect)可於縱方向壓縮脈衝時寬,使等效提高的雷射脈衝強度有效激發非線性電漿波並加速注入電漿波內的電子。所實現的數兆瓦雷尾流場加速可望由新興的高重複頻率二極體激發雷射所產生之兆瓦級雷射脈衝所驅動,以提高電子束的平均電流,增加其在電子束治療或產生X光輻射的應用價值。本研究之重點即為發展次毫米尺度,可提供> 5×10^19 cm^-3的電子密度的氮氣氣腔與噴嘴,並研析引入僅二至一兆瓦尖峰功率的雷射脈衝驅動下所產生的電子束特性。實驗結果顯示當40 飛秒、1 兆瓦、波長為810奈米的雷射脈衝聚焦至以20 psi背壓充入氮氣的450微米長氣腔時,氣靶內電漿電子密度達5.3×10^19 cm^-3,並在重現性 > 90 %的情況下產生能量峰值約 9.1 MeV、電荷量約 25 pC 的電子束。這些電子束具有約11 MeV 的能量擴散度、約40 mrad 的電子束擴散角和約14 mrad 的指向穩定性。而在使用直徑為178微米孔徑之噴嘴時,可在400 psi氮氣背壓下使具高斯密度分佈之氣靶的峰值電漿密度達2.8×10^19 cm^-3,並在重現性> 90 %的情況下產生能量峰值約 7 MeV、電荷量約 14 pC 的電子束。這些電子束具有約6.4 MeV 的能量擴散度、約35 mrad 電子束擴散角和約24mrad的指向穩定性。此實驗結果顯示了以小於50 mJ的雷射能量驅動的雷射尾流場可產生穩定的類單能MeV 電子束,同時給予我們發展高重複率LWFA甚至是X光微影等應用的可能性。


    Laser wakefield acceleration (LWFA) can be implemented by focusing a few-terawatt (TW) laser pulse onto a thin, dense gas target. In this way, the self-focusing effect reduces the transverse size of the pulse and the self-modulation instability causes the longitudinal pulse compression, resulting in a greatly increased pulse intensity capable of exiting a nonlinear plasma wave for accelerating injected electrons. It is expected that few-TW LWFA can be implemented with the high-repetition-rate, diode pumped laser system for generating electron bunches at kHz-level frequencies and raising the beam current suitable for downstream applications such as electron therapy or X-ray images. Therefore, the major goal of this study is to realize sub-mm, dense gas target that can provide plasmas electron density up to 5×10^19 cm^-3 with the commensurate reduction of laser peak power and demonstrate the LWFA driving by a low laser peak power at 1 TW. By focusing a 40-fs, 1-TW, 810 nm pulse on a 450 μm long nitrogen gas cell, quasi monoenergetic electron bunches can be generated with peak energy ~ 9.1 MeV, charge ~ 25 pC and reproducibility >90% at a gas backing pressure of 20 psi. These output electrons exhibit an energy spread ~ 11 MeV, a beam divergence ~ 40 mrad, and a pointing fluctuation ~ 14 mrad. On the other hand, by focusing a 40 fs, 1 TW, 810 nm pulse on a 178 μm size nitrogen orifice, quasi monoenergetic electron bunches can be generated with peak energy ~ 7 MeV, charge ~ 14 pC and reproducibility >90% at a gas backing pressure of 400 psi. These output electrons exhibit an energy spread ~ 6.4 MeV, a beam divergence ~ 35 mrad, and a pointing fluctuation ~ 24 mrad. Our scheme advances the frontier of few-TW LWFA for generating few-MeV electrons with on-target laser energy less than 50 mJ, while maintaining a beam quality sufficient for downstream applications.

    摘要................... i Abstract .............. ii 致謝................... iii 目錄................... iv 表目錄................. vi 圖目錄................. vii 第一章 緒論............. 1 第二章 雷射尾流場電子加速器之概述.......... 3 2.1 啾頻脈衝放大器(CHIRPED PULSE AMPLIFICATION,CPA) .......... 3 2.2 高重複率雷射(HIGH REPETITION RATE LASER SYSTEM)與脈衝壓縮機制 ..........4 2.3 光場游離(OPTICAL-FIELD IONIZATION) .......... 5 2.5 電子被電漿波捕獲加速之條件 .......... 10 2.6 電子注入機制 .......... 11 2.7自我聚焦效應(RELATIVISTIC SELF-FOUCUSING) .......... 14 2.8自我調變不穩定性效應(SELF-MODULATION INSTABILITY) .......... 15 2.9 加速電子能量限制 .......... 16 第三章 實驗設計與方法.......... 17 3.1 實驗站之設計 .......... 19 3.3.1 噴氣氣腔(GAS CELL)設計 ..........19 3.3.2 噴氣噴嘴(GAS JET)設計 .......... 19 3.4 探測光束光路(PROBE BEAM LINE) ..........20 3.5 系統觸發時序之設計 .......... 22 3.6 電子能譜儀(ELECTRON SPECTROMETER)設計 .......... 23 3.6.1 偶極磁鐵(DIPOLE MAGNET) .......... 24 3.6.2 電子感光材料(LANEX)與電荷量轉換校正數值 .......... 25 第四章 實驗結果.......... 27 4.1 使用氣腔進行雷射尾流場加速實驗結果 .......... 27 4.1.1使用PL=2 TW,比較使用氣腔長度LG=400 ΜM與LG=450 ΜM與相應的最佳背壓PN下的電子束特性 .......... 27 4.1.2 使用PL=2 TW、LG=450 ΜM時,在不同背壓PN產生之電子束性質分析........... 29 4.1.3使用PL=1 TW、LG=450 ΜM時,在不同背壓PN產生之電子束性質分析.......... 31 4.1.4解析使用PL=1 TW、LG=450 ΜM時,在不同背壓PN產生之電子密度對於電子束性質的影響.......... 33 4.2 使用噴嘴進行雷射尾流場加速之實驗結果 .......... 39 4.2.1比較使用噴嘴寬度D=203 ΜM與D=178 ΜM,在PL=2 TW與PL=1 TW時相應的最佳背壓PN下的電子束特性 .......... 39 4.3 討論在PL=1 TW,使用噴氣氣腔與噴氣噴嘴的特徵討論 .......... 41 第五章 結論與未來研究改善及規劃..........42 5.1 結論 .......... 42 5.2 未來研究改善與規劃 .......... 43 第六章 參考資料.......... 45

    [1] T. Toshiki and J. M. Dawson, "Laser electron accelerator," Phy.Rev.Lett. 43, 267,(1979).
    [2] E. Esarey, C. B. Schroeder, and W. P. Leemans,” Physics of laser-driven plasma-based electron accelerators” Rev. Mod. Phys. 81, 1229 (2009).
    [3] C. Joshi, Plasma Phys. Controlled Fusion 61, 104001 (2019).
    [4] D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221,(1985).
    [5] E. Kaksis, G. Almási, J. A. Fülöp, A. Pugžlys, A. Baltuška, and G. Andriukaitis, "110-mJ 225-fs cryogenically cooled Yb: CaF2 multipass amplifier," Optics express. 24, 28915-28922,(2016).
    [6] T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, and Z. Major, "1 kW, 200 mJ picosecond thin-disk laser system," Opt. Lett. 42, 1381-1384,(2017).
    [7] M. Kaumanns, V. Pervak, D. Kormin, V. Leshchenko, A. Kessel, M. Ueffing, Y. Chen, and T. Nubbemeyer, "Multipass spectral broadening of 18 mJ pulses compressible from 1.3 ps to 41 fs," Optics letters. 43, 5877-5880,(2018).
    [8] F. Albert and A. G. R. Thomas,” Applications of laser wakefield accelerator-based light sources” ,Plasma Phys. Controlled Fusion 58, 103001 (2016).
    [9] Darren Batey, “Ptychographic imaging of mixed states”, Department of Electronic and Electrical Engineering University of Sheffield, PhD, 2014.
    [10] Cipiccia, S., Islam, M., Ersfeld, B. et al. "Gamma-rays from harmonically resonant betatron oscillations in a plasma wake," Nature Phys 7, 867–871 (2011).
    [11] A. Hannasch, A. Laso Garcia, M. LaBerge, R. Zgadzaj, A. Köhler, J. P. Couperus Cabadağ, O. Zarini, T. Kurz, A. Ferrari, M. Molodtsova, L. Naumann, T. E. Cowan, U.
    46
    Schramm, A. Irman & M. C. Downer,” Compact spectroscopy of keV to MeV X‑rays from a laser wakefield accelerator”, Sci Rep 11, 14368 (2021).
    [12] H. Stark, J. Buldt, M. Muller, A. Klenke, A. Tunnermann, and J. Limpert,“23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification,”Opt. Lett. 44 5529 (2019).
    [13] T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1 kW, 200 mJ picosecond thin-disk laser system,” Opt. Lett. 42 1381 (2017).
    [14] C.-H. Lu, Y.-J. Tsou, H.-Y. Chen, B.-H. Chen, Y.-C, Cheng, S.-D. Yang, M.-C. Chen, C.-C. Hsu, and A. H. Kung, “Generation of intense supercontinuum in condensed media,” Optica 1, 400 (2014).
    [15] M. Hanna, X. Delen, L. Lavenu, F. Guichard, Y. Zaouter, F. Druon, and P. Georges, “Nonlinear temporal compression in multipass cells: theory,” J. Opt. Soc. Am. B 34 1340 (2017).
    [16] M. Kaumanns, V. Pervak, D. Kormin, V. Leshchenko, A. Kessel, M. Ueffing, Y. Chen, and T. Nubbemeyer, “Multipass spectral broadening of 18 mJ pulses compressible from 1.3 ps to 41 fs,”Opt. Lett. 43 5877 (2018).
    [17] R. L. Wagner, "Laser-plasma electron accelerators and nonlinear, relativistic optics," Applied physics, University of Michigan, (1999).
    [18] H. H. Chu, “Construction of a 10-TW Laser of High Coherence and Stability and Its Application in Laser-Cluster Interaction and X-Ray Lasers”, Department of Physics, National Taiwan University, PhD, (2005).
    [19] W. Kruer, The physics of laser plasma interactions. CRC Press,(2018).
    [20] W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca, and L. O. Silva, "Generating multi-GeV electron bunches using single stage laser wakefield
    47
    acceleration in a 3D nonlinear regime," Physical Review Special Topics-Accelerators and Beams. 10, 061301,(2007).
    [21] H. Suk, N. Barov, J. B. Rosenzweig, and E. Esarey, "Plasma electron trapping and acceleration in a plasma wake field using a density transition," Phys. Rev. Lett. 86, 1011-1014,(2001).
    [22] M. Chen, E. Esarey, C. Schroeder, C. Geddes, and W. Leemans, "Theory of ionization-induced trapping in laser-plasma accelerators," Phys. Plasmas. 19, 033101,(2012).
    [23] G. Z. Sun, E. Ott, Y. Lee, and P. Guzdar, "Self‐focusing of short intense pulses in plasmas," Phys. Fluids. 30, 526-532,(1987).
    [24] R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Self-focusing: Past and Present: Fundamentals and Prospects. Springer, New York, NY,(2008).
    [25] A. Buck, K. Zeil, A. Popp, K. Schmid, A. Jochmann, S. Kraft, B. Hidding, T. Kudyakov, C. Sears, and L. Veisz, "Absolute charge calibration of scintillating screens for relativistic electron detection," Rev. Sci. Instrum. 81, 033301,(2010).
    [26] M.-W. Lin, T.-Y. Chu, Y.-Z. Chen, D. K. Tran, H.-H. Chu, S.-H. Chen, and J. Wang,” Laser wakefield acceleration driven by a fewterawatt laser pulse in a sub-mm nitrogen gas jet” Phys. Plasmas. 27, 113102,(2020).
    [27] M.-W. Lin, C.-Y. Hsieh, D. Tran, and S.-H. Chen, "Simulation study of ionization-induced injection in sub-terawatt laser wakefield acceleration," Phys. Plasmas. 27, 013102,(2020).

    QR CODE