研究生: |
楊家銘 Chia-Ming Yang |
---|---|
論文名稱: |
以超快雷射研究I-(CH2)n-Ph (n=0~2) 系列分子電子能轉移動態學 Electronic Energy Transfer in I-(CH2)n-Ph (n=0~2) Studied by Femtosecond Laser Spectroscopy |
指導教授: |
鄭博元 教授
Po-Yuan Cheng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 111 |
中文關鍵詞: | 電子能轉移 、超快雷射 、光譜 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨在以超快速雷射光譜研究氣相中I-(CH2)n-Ph (n = 0~2)系列分子的電子能轉移過程,主要的技術為激發-探測多光子游離法,及動能解析飛行時間質譜。待測分子由激發雷射光解,並以探測雷射游離光解產物後,再由飛行時間質譜儀解析碎片分子。
由碘離子訊號隨延遲時間的變化所得的瞬時光譜,與Kinetic-energy resolved time-of-flight mass spectrometry (KETOF) 的圖譜,解析出分子在高激發態( )的反應動態。在瞬時光譜中,訊號曲線呈現雙指數上升,三分子中所解析出的快速指數上升過程可歸因於超快速的電子能轉移與內轉換之競爭,適解後所得的時間常數可代入反應速率關係式中,所得到的超快速電子能轉移時間常數不因碳鏈的增加而在轉移時間上有減緩的趨勢;另一所適解出的慢速指數上升是由電子能轉移過程與內轉換後由基態的解離管道所競爭而來,而此慢速解離時間常數則因碳鏈的增加致使原屬電子能轉移過程,逐漸由內轉換後基態解離的過程取代。另外,在2-(iodoethyl) benzene分子中有一約0.6 ps的反應時間常數,吾人推測是因分子特殊構型致使苯環的高激發態跨越至碘原子的雷德堡態之電子能轉移過程。
[1] photosynthesis
[2] Mita Chattoraj, Balakrishna Bal, G. L. Closs, and Donald H. Levy, J. Phys. Chem. 95, 9666 (1991) .
[3] Mita Chattoraj, Basil Paulson, Yan Shi, G. L. Closs, and Donald H. Levy, J. Phys. Chem. 97, 13046 (1993) .
[4] Mita Chattoraj, Dutch D. Chung, Basil Paulson, G. L. Closs, Donald H. Levy, J. Phys. Chem. 98, 3361 (1994) .
[5] W. T. Yip and Donald H. Levy, J. Phys. Chem. A 103, 10 (1999).
[6] M. D. Person, P. W. Kash, and L. J. Bulter, J. Chem. Phys. 97, 355 (1992) .
[7] P. W. Kash, G. C. G. Waschewsky, and L. J. Bulter, J. Chem. Phys. 99, 4479 (1993) .
[8] P. W. Kash, G. C. G. Waschewsky, R. E. Morss,and L. J. Bulter, J. Chem. Phys. 100, 3463 (1994) .
[9] Nicholas J. Turro , Modern Molecular Photochemistry.
[10] P. Y. Cheng, D. Zhong, Ahmed H. Zewail, Chem. Phys. Lett. 237, 399 (1995) .
[11] M. Kadi, J. Davidsson, A. N. Tarnovsky, M. Rasmusson, E.Akesson, Chem. Phys. Lett.350, 93 (2001).
[12] T. Baumert, S. Pedersen, A. H. Zewail, J. Phys. Chem. 97, 12447 (1993).
[13] P. Y. Cheng, D. Zhong, A. H. Zewail, Chem. Phys. Lett. 237, 399 (1995).
[14] P. Y. Cheng, D. Zhong, A. H. Zewail, J. Phys. Chem. 99, 15733 (1995).
[15] P. Y. Cheng, D. Zhong, A. H. Zewail, J. Phys. Chem. 105, 6216 (1996).
[16] D. Zhong, A. H. Zewail, J. Phys. Chem.A 102, 4031 (1998).
[17] Assion, A.; Baument, T.; Geisler, M.; Seyfried, V.; Gerber, G., European Physical Journal D: Atomic, Molecular and Optical Physics 145, 1034 (1998).
[18] Cheng, Po-Yuan; Chen, Wei-Kan; Ho, Jr-Wei. Abstracts of Papers, 227th ACS National Meeting, Anaheim, CA, United States, March 28-April 1, (2004).
[19] Cheng, P. Y.; Zhong, D.; Zewail, A. H. Chem. Phys. Lett. 242, 369 (1995).
[20] Willam H. Pence, Steven L. Baughcum, and Stephen R. Leone, J. Phys. Chem. 85, 3844 (1981).
[21] A. P. Baronavski and J. C. Owrutsky, J. Chem. Phys. 108, 3445 (1998).
[22] A. Freedman, S.C. Yang, M. Kawasaki, and R. Bersohn, J. Chem. Phys. 72, 1028 (1980).
[23] Ya-Jun Lin, Petter Persson, and Sten Lunell, J. Phys. Chem. A 108, 2339 (2004).
[24] W Radloff, Th. Freudenberg, H.-H. Ritze, V. Stert, F. Noack, I. V. Hertel 1. Chem. Phys. Lett. 261, 301 (1996).
[25] P. Farmanara, V. Stert, W. Radloff, and I. V. Hertel , J. Phys. Chem. A 105, 5613 (2001).
[26] Shih-Huang Lee, Kuo-Chun Tang, I-Chia Chen, M. Schmitt, J. P. Shaffer, T. Schultz, Jonathan G. Underwood, M. Z. Zgierski, and Albert Stolow J. Phys. Chem. A 106, 8989 (2002).
[27] P.Y. Cheng, D. Zhong, Ahmed H. Zewail, Chem. Phys. Lett. 237, 399 (1995).
[28] M. Kadi, J. Davidsson, A.N. Tarnovsky, M. Rasmusson, E. Akesson, Chem. Phys. Lett. 350, 93 (2001).