簡易檢索 / 詳目顯示

研究生: 劉彥伯
Yen-Po Liu
論文名稱: 雙輪機械人之導航與運動控制
Toward the navigation and control of a two-wheeled autonomous vehicle
指導教授: 陳建祥
Jian-Shiang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 78
中文關鍵詞: 聲納無線射頻辨識系統雙輪機械人
外文關鍵詞: sonar, RFID, two-wheeled vehicle
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 閃避障礙物為雙輪機械人控制系統首要目標,為達成此目標,超音波感測器已被廣泛採用,利用超音波感測雙輪機械人與周圍環境間的距離,再利用此資訊做出進一步的控制,達成沿壁行走(Wall-Following)與閃避障礙物的要求;雙輪機械人除了要能夠閃避未知障礙物之外,更需要被解決的問題,即為定位的問題,如無法知道雙輪機械人目前所在位置,將無法做出進一部的控制;現今無線射頻辨識系統(RFID, Radio Frequency IDentification)廣泛被應用於服務業當作產品的控管,且在定位上是屬於較不貴且可靠度不錯的裝置,因此,無線射頻辨識系統可以有效的解決定位上的問題。
    本文應用無線射頻辨識系統於雙輪機械人定位上,並將沿壁行走與閃避障礙物的方法融入其內以達成雙輪機械人導航與運動控制;以嵌入式工業電腦(Lincon 8000)裡的Linux為主要的發展環境,運用C語言來撰寫各控制法則,以實現導航與運動控制,對於聲納誤判加以處理,使得聲納對於轉角所造成的誤判得以改善,利用RFID作為定位的裝置,藉此修正雙輪機械人內部位置參數,達到定位的目標,並且可以經由FTP傳送雙輪機械人內部行走參數回主控端,把行走的資訊繪至於主控端的Matlab使用者圖形介面上,易於檢視雙輪機械人目前所在位置。


    In recent years, RFID (Radio Frequency IDentification) system has been widely used in service industry for identification. The RFID system is designed for inexpensive and reliable purpose in automatic identification. In addition, self-localization problem can be effectively solved by using RFID system. To achieve this goal, a two-wheeled autonomous vehicle is equipped with a RFID reader to communicate with RFID-tags, which are distributed in the environment.
    In this thesis, we propose a method to use sonar for obstacle avoidance and wall-following. In addition, we use the RFID system for self-localization to achieve the navigation and the control of a two-wheeled autonomous vehicle. Our experimental platform is based on the Linux operating system of an embedded industrial computer (Lincon 8000). We utilize C language to implement both the navigation system and the control system of this two-wheeled autonomous vehicle.
    By using the RFID self-localization technique, we demonstrate the navigation and the control systems on a two-wheeled autonomous vehicle effectively.

    目錄 第一章 緒論 1 1.1 背景 1 1.2研究動機 2 1.3文獻回顧 3 1.4本文架構 6 第二章 系統描述 7 2.1 緒論 7 2.2 雙輪機械人的動態方程式 8 2.3 運動控制器設計 11 2.4 定位系統 14 2.4.1無線射頻辨識系統原理 16 2.4.2 無線設頻辨識系統定位方式 25 2.5 結語 25 第三章 實驗系統架構 26 3.1緒論 26 3.2 雙輪機械人硬體架構 27 3.2.1 雙輪機械人之定位系統 28 3.2.2 雙輪機械人之控制系統架構 28 3.2.3 雙輪機械人程式控制語法 30 3.2.4雙輪機械人之內部運作方式 31 3.2.5感測系統 33 3.3嵌入式電腦架構 34 3.4無線射頻辨識系統實驗設備 37 3.5 全系統架構圖 40 3.6 圖形使用者介面之同步顯示自走車位置 43 3.7 結語 45 第四章 實驗結果 46 4.1 雙輪機械人之動態模擬 46 4.2 雙輪機械人運動控制法則 48 4.2.1 速度命令曲線之規劃 48 速度命令曲線實驗結果 50 4.2.2 沿壁行走(Wall-Following)之實現 51 a. 搜尋最近牆壁 52 搜尋牆壁實驗結果 53 b. 障礙物閃避 55 閃避障礙物實驗結果 58 c. 保持固定距離沿壁行走 59 沿壁行走實驗結果圖 60 d. 聲納誤判之處理 61 聲納誤判實驗結果 62 4.3 雙輪機械人之定位系統 64 4.3.1 角度修正 64 角度修正實驗結果 65 4.3.2 位置修正 66 位置修正實驗結果 67 4.4 整合測試 68 Matlab顯示結果圖 70 4.5 結論 71 第五章 結論 72 5.1 論文總結 72 5.2 本文貢獻 72 5.3 未來研究方向與建議 73 參考文獻 74 圖目錄 【圖2.1】雙輪機械人參數對應圖 9 【圖2.2】輪子驅動方式參數圖 10 【圖2.3】雙輪機械人沿壁與避障控制系統 14 【圖2.4】卡片型RFID 18 【圖2.5】玻璃型RFID 18 【圖2.6】硬幣型RFID 18 【圖2.7】手錶型RFID 18 【圖2.8】鑰匙型RFID 18 【圖2.9】印刷天線型RFID 18 【圖2.10】電子標籤的功能設計方塊圖 19 【圖2.11】被動式電子標籤的功能方塊圖 21 【圖2.12】電子標籤的基本結構 22 【圖2.13】讀取器的組成模組 23 【圖2.14】RFID系統示意圖 24 【圖3.1】Pioneer 架構圖 27 【圖3.2】Pioneer 主從架構圖 29 【圖3.3】左右兩輪轉速圖 31 【圖3.4】內部速度極限設定值 32 【圖3.5】速度曲線圖 32 【圖3.6】超音波感測器配置圖 33 【圖3.7】Lincon8000外觀圖 34 【圖3.8】連接LinCon8000執行程式圖 36 【圖3.9】RFID讀取器 38 【圖3.10】RS485轉232轉換器 38 【圖3.11】RFID讀取天線 39 【圖3.12】RFID電子標籤 39 【圖3.13】Lincon與自走車訊息傳遞示意圖 40 【圖3.14】Lincon與RFID reader訊息傳遞示意圖 41 【圖3.15】全系統裝置圖 42 【圖3.16】Matlab 參數顯示與同步顯示圖 43 【圖3.17】Matlab 參數初始化與參數更新同步顯示流程圖 44 【圖4.1】步階響應 46 【圖4.2】跟隨1/3 Hz的正弦波 47 【圖4.3】跟隨2/3 Hz的正弦波 47 【圖4.4】梯形速度曲線 49 【圖4.5】三角速度曲線 49 【圖4.6】搜尋牆壁流程圖 52 【圖4.7】搜尋牆壁動作圖 53 【圖4.8】搜尋牆壁時的角度變化圖 54 【圖4.9】雙輪機械人與障礙物面成垂直角 57 【圖4.10】雙輪機械人與障礙物面成傾斜角 57 【圖4.11】閃避障礙物軌跡圖 58 【圖4.12】沿牆行走修正圖 59 【圖4.13】沿壁行走軌跡圖 60 【圖4.14】避免誤判障礙物流程圖 61 【圖4.15】聲納誤判之動作圖與聲納值 62 【圖4.16】前方遇障之動作圖與聲納值 63 【圖4.17】聲納計算方位法則 64 【圖4.18】與牆夾角及需修正角度 65 【圖4.19】電子標籤與範圍示意圖 66 【圖4.20】經過標籤1修正結果圖 67 【圖4.21】經過標籤5修正結果圖 68 【圖4.22】雙輪機器人系統整合流程圖 69 【圖4.23】回傳位置與標籤值至Matlab顯示 70 表目錄 【表2.1】雙輪機械人參數對應圖 9 【表2.2】主要RFID技術比較 16 【表2.3】RFID標籤特性 17 【表2.4】電子標籤的操作類型 20 【表3.1】LinCon8000的相關資訊 35 【表4.1】速度命令曲線 50 【表4.2】旋轉角度參數值 51 【表4.3】前方各聲納避障所需參數值 56

    參考文獻
    [1] 和田忠太著/劉明成譯,機械構造解剖圖鑑,世茂公司,1999。
    [2] 林崧銘,微電腦應用:機器人,全華科技圖書公司,1993。
    [3] 陳宏宇,RFID系統入門無線射頻辨識系統,文魁公司,2004。
    [4] J. Borenstein, and L. Feng, “Measurement and correction of systematic odometry errors in mobile robot,” IEEE Transactions on Robotics and Automation, vol. 12, no. 6, pp.869-880, 1996.
    [5] 楊志雄,基於多重感測之自走式機器人運動規劃與精確定位,國立交通大學電機與控制工程學系碩士論文,1989。
    [6] Y. Kanayama, Y. Kimura, F. Miyazaki and T. Noguchi, “A stable tracking control method for an autonomous mobile robot,” in Proc. IEEE International Conference on Robotics and Automation, Cincinnati, OH, pp.384-389, 1990.
    [7] K. R. Kim, J. C. Lee, and J. H. Kim, “Dead-reckoning for a two-wheeled mobile robot on curved surface,” in Proc. IEEE International Conference on Robotics and Automation, vol. 2, Minneapolis, MN, pp.1732-1737, 1996.
    [8] S. Iida, and S. Yuta, “Control of a vehicle subsystem for an autonomous mobile robot with power wheeled steerings,” Proc. IEEE International Workshop on Intelligent Motion Control, pp.859-866, August 1990.
    [9] W. Nelson, and L. Cox, “Local path control for an autonomous vehicle,” Proc. IEEE International Conference on Robotics and Automation, Philadelphia, PA, pp.1504-1510, 1988.
    [10] Y. Kanayama, A. Nilipour and C. Lelm, “A locomotion control method for autonomous vehicles,” Proc. IEEE Conference on Robotics and Automation, Philadelphia, PA, pp.1315-1317, 1988.
    [11] 謝銘峰,GPS/DGPS與慣性導航系統之整合研究,國立交通大學電機與控制工程學系碩士論文,1994。
    [12] 安守中,GPS全球衛星定位系統入門,全華科技圖書公司,2002。
    [13] 黃仁杰,全球定位系統與慣性導航系統整合之研究,國立交通大學電機與控制工程學系碩士論文,2000。
    [14] Y. Watanabe, and S. Yuta, “Position estimation of mobile robots with internal and external sensors using uncertainty evolution technique,” Proc. IEEE International Conference on Robotics and Automation, Cincinnati, OH, pp.2011-2016, 1990.
    [15] G. Mazzini, “A simple performance analysis of sensor localization with two beacons,” IEEE International Symposium Personal, Indoor and Mobile Radio Communications, vol. 2, pp.1037-1041, 2004.
    [16] C. Poggi and G. Mazzini, “Collinearity for sensor network localization,” IEEE Conference on Vehicular Technology, vol. 5, pp.3040-3044, 2003.
    [17] J. J. Leonard and H. F. Durrant-Whyte, “Mobile robot localization by tracking geometric beacon,” IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp.376-382, 1991.
    [18] L. Kleeman, “Ultrasonic autonomous robot localisation system,” Proc. IEEE/RSJ International Workshop on Intelligent Robots and System, pp.212-219, 1989.
    [19] J. Guivant, E. Nebot and S. Baiker, “High accuracy navigation using laser range sensor in outdoor application,” Proc. IEEE International Conference on Robotics and Automation, San Francisco, CA, vol. 4, pp.3817-3822, 2000.
    [20] S. Ghidary, T. Tani, T. Takamori and M. Hattori, “A new home robot positioning system (HRPS) using IR switched multi ultrasonic sensors,” Proc. IEEE International Conference on Systems, Man and Cybernetics, Tokyo, Japan, vol. 4, pp.737-741, 1999.
    [21] A. Kurz, “Constructing maps for mobile robot navigation based on ultrasonic range data,” IEEE Transactions on Systems, Man and Cybernetics, vol. 26, no. 2, pp.233-242, 1996.
    [22] M. Golfarelli, D. Maio, and S. Rizzi, “Correction of dead reckoning error in map building for mobile robots,” IEEE Transactions on Robotics and Automation, vol. 17, no. 1, pp.37-47, 2001.
    [23] D. Hahnel, W. Burgard, D. Fox and M. Philipose, “Mapping and localization with RFID technology,” Proc. IEEE International Conference on Robotics and Automation, vol. 1, pp.1015-1020, 2004.
    [24] O. Kubitz, O. Berger, M. Perlick and R. Dumoulin, “Application of radio frequency identification devices to support navigation of autonomous mobile robots,” IEEE Conference on Vehicular Technology, Phoenix, AZ, vol. 1, pp.126-130, 1997.
    [25] S. Iida, S. Yuta, “Control of vehicle with power wheeled steering using feedforward dynamics compensation,” IEEE Conference on Industrial Electronics, Control and Instrumentation, Kobe, vol. 3, pp.2264-2269, 1991.
    [26] Pioneer 3 Operations Manual,ActiveMedia Robotics, 2004.
    [27] Hardware manual lincon_8000,泓格科技編著。
    [28] P. Turennout, G. Honderd and L. J. Schelven, “Wall-following control of a mobile robot,” IEEE Conference on Robotics and Automation, Nice, vol. 1, pp.280-285, 1992.
    [29] T. Yata, L. Kleemanand and S. Yuta, ”Wall following using angle information measured by a single ultrasonic transducer,” IEEE Conference on Robotics and Automation, vol. 2, pp.1590-1596, 1998.
    [30] Y. Ando and S. Yuta, “Following a wall by an autonomous mobile robot with a sonar-ring,” IEEE Conference on Robotics and Automation, Leuven, vol. 3, pp.2599-2606, 1995.
    [31] 吳至仁,即時障礙物偵測定位及標誌辨識,國立成功大學工程 科學系碩士論文,2001。
    [32] 陳饒中,雙輪機械人系統之障礙物檢測與位置資料之建立,國立成功大學工程科學系碩士論文,2000。
    [33] 林于琬,以聲納建立雙輪機械人環境地圖之研究,國立成功大學工程科學系碩士論文,2004。
    [34] 陳巧茵,小型雙輪機械人以超音波避障之研究,國立成功大學工程科學系碩士論文,2001。
    [35] 日晶科技股份有限公司網頁http://www.sunlitcorp.com/
    [36] The 7000 Series Bus Converter User’s Manual,泓格科技編著。
    [37] 李顯宏編著,Matlab 介面開發與編譯技巧,文魁公司,2005。
    [38] Gene F. Franklin, J. David Powell and Michael L. Workman, Digital Control of Dynamic Systems, 3rd, Addision Wesley, CA, USA,1997.
    [39] B. Barshan and R. Kuc, ”Differentiating sonar reflections from corners and planes by employing an intelligent sensor,” IEEE Trans. on pattern analysis and machine intelligence, vol. 12, no. 6, pp.560-569, June 1990.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE