研究生: |
劉盈均 Liu, Ying-Jyun |
---|---|
論文名稱: |
基於行動裝置之睡眠狀態分類與聽覺刺激系統 Sleep Stages Classification and Auditory Stimulation System using Electroencephalography on Mobile Devices |
指導教授: |
黃元豪
Huang, Yuan-Hao |
口試委員: |
馬席彬
Ma, Hsi-Pin 黃柏鈞 Huang, Po-Chiun 楊家驤 Yang, Chia-Hsiang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | 腦電圖 、行動裝置 、睡眠狀態分類 |
外文關鍵詞: | EEG, Mobile Devices, Sleep Stage Classification |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
睡眠品質是近年來備受關注的健康指標,而其中睡眠階段的分類對於評估睡眠品質及檢測睡眠狀況是重要的依據。睡眠多項生理檢查是醫院睡眠階段分類的標準,這項檢測需要技術人員的人工標記及評估、受試者需親自至醫院受測並在睡眠時戴上許多感測器,因此本研究希望使用行動裝置結合市售的單通道 EEG 穿戴式裝置、不須使用到醫療等級,就能達到簡易的自動睡眠階段分類及給予聲音刺激回饋來幫助睡眠。這篇論文睡眠階段分類預測演算法是基於散射變換來提取時移不變及變形穩定的特徵,並且使用支持向量機作為預測睡眠階段的分類器。在行動裝置上使用訓練完成的模型來幫助預測來自穿戴式裝置新數據的睡眠階段、當系統判斷受試者進入深度睡眠時會播放粉紅噪音來幫助睡眠。
Sleep quality is a popular topic in recent years. For scoring and enhancing sleep quality, sleep stage classification plays a critical role. There are a lot of novel application based on sleep stage classification. Polysomnography(PSG) is the gold standard for sleep stage interpretation that needing a technician scoring and both complex, time-consuming and uncomfortable. We would like to present the automatic sleep stage classification system that uses machine learning algorithm to implement on a mobile application that connecting a wearable single-channel EEG device. The sleep stage predicted algorithm is based on scattering transform to extract the time-shift invariant and deformation stable features. Support vector machine(SVM) is the classifier to predicted sleep stages. The trained SVM model is saved to help new data prediction on the smartphones. As the system detected the subject fall into deep sleep, the pink noise stimulation is played to enhance the slow-waves that relative to memory consolidation.
[1] C. Iber, S. Ancoli-Isreal, A. C. Jr., and S. Quan, The AASM Manual for Scoring of
Sleep and Associated Events-Rules: Technical Specification. America: American
Academy of Sleep Medicine, 2007.
[2] R. Berry, R. Brooks, C. Gamaldo, S. Harding, R. Lloyd, C. Marcus, and B. Vaughn.
(2012) Rules for scoring respiratory events in sleep: update of the 2007 aasm
manual for the scoring of sleep and associated events. USA. [Online]. Available:
https://sleepfoundation.org/excessivesleepiness/content/why-do-we-need-sleep
[3] A. Rechtschaffen and A. Kales. (1968) A manual of standardized terminology,
techniques and scoring system for sleep stages of human subjects. Washington:
Public Health Service, US Government Printing Office. [Online]. Available:
https://sleepfoundation.org/excessivesleepiness/content/why-do-we-need-sleep
[4] C. Tononi, G. Cirelli, “Sleep and the price of plasticity: from synaptic and cellular
homeostasis to memory consolidation and integration,” Neuron, pp. 12–34, 2014.
[5] C. Z. Katherina K Hauner, James D Howard and J. A. Gottfried., “Stimulusspecific enhancement of fear extinction during slow-wave sleep.” Nature Neuroscience, vol. 16, no. 11, pp. 1553–1555, 2013.
[6] G. Keklund and T. ˚Akerstedt., “Objective components of individual differences in
subjective sleep quality.” Journal of Sleep Research, vol. 6, no. 4, pp. 217–220, 1997.
[7] W. Plihal and J. Born., “Effects of early and late nocturnal sleep on declarative and
procedural memory.” Journal of Cognitive Neuroscience, vol. 9, no. 4, pp. 534–547,
1997.
[8] M. Bellesi, G. C. C. Riedner, B.and Garcia-Molina, and G. Tononi, “Enhancement
of sleep slow waves: underlying mechanisms and practical consequences.” Frontiers
in Systems Neuroscience, pp. 8:1–17, 2014.
[9] N. Papalambros, G. Santostasi, R. Malkani, R. Braun, S. Weintraub, K. Paller, and
P. Zee, “Acoustic enhancement of sleep slow oscillations and concomitant memory
improvement in older adults.” Frontiers in Human Neuroscience, pp. 1–14, 2017.
[10] H.-V., T. Martinetz, and M. Born, J.and M¨olle, “Auditory closedloop stimulation
of the sleep slow oscillation enhances memory,” Neuron, p. 78:1–9, 2013.
[11] N. Papalambros, G. Santostasi, R. Malkani, R. Braun, S. Weintraub, K. Paller, and
P. Zee, “Acoustic enhancement of sleep slow oscillations and concomitant memory
improvement in older adults.” Hum Neurosci, p. 11: 109, 2017.
[12] G.-R. Liu, Y.-L. Lo, Y.-C. Sheu, and H.-T. Wu, “Diffuse to fuse eeg spectra –
intrinsic geometry of sleep dynamics for classification.” 2018.
[13] A. Patanaik, J. Ong, J. Gooley, S. Ancoli-Israel, and M. Chee, “An end-to-end
framework for real-time automatic sleep stage classification,” Sleep, vol. 41(5), 2018.
[14] A. Nguyen, R. Alqurashi, Z. Raghebi, F. BanaeiKashani, A. C. Halbower, T. Dinh,
and T. Vu, “In-ear biosignal recording system: A wearable for automatic wholenight sleep staging.” ACM, pp. 19–24, 2016.
[15] Y. Zhang, Z. Yang, K. Lan, X. Liu, Z. Zhang, P. Li, D. Cao, J. Zheng, and J. Pan,
“Sleep stage classification using bidirectional lstm in wearable multi-sensor systems.” IEEE INFOCOM 2019-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2019.
[16] A. J. Boe, L. L. M. Koch1, M. K. O’Brien, N. Shawen, J. A. Rogers, R. L. Lieber,
K. J. Reid, P. C. Zee, and A. Jayaraman, “Automating sleep stage classification
using wireless, wearable sensors,” Nature Partner Journal, vol. 2, p. 131, 2019.
[17] O. Walch1, Y. Huang, D. Forger, and C. Goldstein, “Sleep stage prediction with raw
acceleration and photoplethysmography heart rate data derived from a consumer
wearable device,” SLEEP, pp. 11–16, 2019.
[18] J. L. Ong, J. C. Lo, N. I. Chee, G. Santostasi, K. A. Paller, P. C. Zee, and M. W.
Chee, “Effects of phase-locked acoustic stimulation during a nap on eeg spectra and
declarative memory consolidation,” Sleep Medicine, vol. 20, pp. 88–97, 2016.
[19] J. Zhou, D. Liu, X. Li, J. Ma, J. Zhang, and J. Fang, “Pink noise: Effect on
complexity synchronization of brain activity and sleep consolidation,” Journal of
Theoretical Biology, pp. 68–72, 2012.
[20] O. TSINALIS, P. M. MATTHEWS, and Y. GUO, “Automatic sleep stage scoring
using time-frequency analysis and stacked sparse autoencoders,” September 2015.
[21] L. Marshall, H. Helgad´ottir, M. M¨olle, and J. Born., “Boosting slow oscillations
during sleep potentiates memory.” Nature, vol. 444, no. 7119, pp. 610–613, 11 2006.
[22] M. Bellesi, B. A. Riedner, G. Garcia-Molina, C. Cirelli, and G. Tononi., “Enhancement of sleep slow waves: underlying mechanisms and practical consequences.”
Frontiers in Systems Neuroscience, vol. 8, pp. 1–17, 10 2014.
[23] B. A. Riedner, B. K. Hulse, F. Ferrarelli, S. Sarasso, and G. Tononi., “Enhancing
sleep slow waves with natural stimuli.” Medicamundi, vol. 45, no. 2, pp. 82–88,
2010.
[24] N. HONG-VIET, C. JENS, J. CLAUSSEN, M. BORN, and MOLLE, “Induction
of slow oscillations by rhythmic acoustic stimulation,” March 2012.
[25] C.-H. Lin, “The composition of electroencephalogram application software programming textbook,” Master’s thesis, Chaoyang University of Technology, 2015.
[26] A. Khandoker, M. Palaniswami, and C. Karmakar, “Support vector machines for
automated recognition of obstructive sleep apnea syndrome from ecg recordings,”
Information Technology in Biomedicine, IEEE Transactions on, vol. 13, no. 1, pp.
37–48, 2009.
[27] H.-T. Wu, R. Talmon, and Y.-L. Lo, “Assess sleep stage by modern signal processing
techniques,” IEEE Transactions on Biomedical Engineering, p. in press, 2015.