簡易檢索 / 詳目顯示

研究生: 洪慈蓮
Hung, Tsu Lien
論文名稱: 以磁化率、比熱、電阻探討重費米系統CeAl2與超導體K2Fe4Se5、Bi4O4S3的壓力效應研究
Pressure Effects on Magnetic Susceptibility, Specific Heat, and Electrical Resistivity in CeAl2 Heavy Fermion and K2Fe4Se5, Bi4O4S3 Superconductors.
指導教授: 吳茂昆
Wu, Maw Kuen
陳洋元
Chen, Yang Yuan
口試委員: 郭永綱
Kuo,Yung Kang
戴明鳳
Tai, Ming Fong
王明杰
Wang, Ming Jye
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 115
中文關鍵詞: 高壓重費米系統超導鉀鐵硒鉍氧硫
外文關鍵詞: high pressure, heavy fermion system, superconductivity, K2Fe4Se5, Bi4O4S3
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要以高壓磁化率、電阻與比熱去探討重費米系統CeAl2、與超導體K2Fe4Se5、Bi4O4S3 的磁性與超導的物理現象。使用的高壓裝置有兩種,一種是鈹銅壓力砧,另一種是鑽石高壓砧。前者可進行磁化率的量測,後者則可作為比熱及電阻的量測。本論文依此三種材料分別論述如下:
    第一部分是重費米系統CeAl2。從過去的研究得知,它具有3.8 K的反鐵磁相變,及5 K的近藤溫度。從實驗結果得知,隨著壓力的增加,反鐵磁的相轉變溫度會先稍微地增加,到0.3 GPa達到最大值4.34 K之後再隨著壓力的上升而下降(TN=2 K, P=2 GPa)。在CeAl2的系統中,其反鐵磁相變是由Ce離子的磁矩經RKKY的交互作用造成,而這兩個Ce離子之間交換能常數(JRKKY) 與兩者距離的關係是成餘弦函數的關係,進而導致反鐵磁相變溫度受壓力影響。由磁化率的結果,Ce離子的價位隨著壓力的增加從3.058降至3.004(P=0.9 GPa),顯示Ce離子4f0的比例隨壓力增加而降低,這結果可能是因4f1的電子往低能量移動遠離費米面,導致Ce離子被侷限於更深層的軌道。由電阻的實驗結果,電阻與溫度遵循費米液體的公式 ,因係數A隨著壓力增加而減少,由於近藤溫度TK與 成正比關係,所以近藤溫度是隨著壓力增加而增加。從反鐵磁溫度隨壓力增加從TN=4.34 K而降低2 K(P=2 GPa),可預期反鐵磁相轉變溫度在壓力3 GPa時降為零,達到量子臨界點(Quantum Critical Point)。
    第二個系統是K2Fe4Se5超導體,是一個有趣且複雜的鐵基超導體系統。其超導與熱處理的溫度有關,750 oC的熱處理可得到具有超導性質。從我們的比熱與高壓磁化率數據可以得知,其超導轉變溫度在30 K附近,而且從BCS的理論來計算,ΔC/γTc 經由計算得到0.148 而且超導能隙估算為6.39 meV。如果樣品的熱處理溫度在300 oC,樣品就不具有超導性,但在120 K附近有來自Fe離子的價位變化的磁性相變(Verwey Transition)。從比熱數據中,並沒有看到120 K的磁性相轉變溫度,可能是因為相轉變的比例太小低於儀器的解析度。在高壓磁化率部分,對高溫熱處理的超導樣品,超導溫度隨著壓力增加到0.9 GPa時,超導溫度並未有明顯的變化。對無超導的樣品,壓力使磁性相轉變的溫度從120 K降到 119 K。
    第三個超導系統是Bi4O4S3,是在2012年才發現到的第一個鉍硫系列的超導。在加壓磁化率中,當壓力從常壓增加到1 GPa時,超導溫度從5 K降到4 K。惟比熱數據中,並未看到此變化,推測超導的比例較低無法從比熱量測中看到。


    In this dissertation, the physical properties of heavy Fermion system CeAl2 and superconductors of Bi4O4S3 and K2Fe4Se5 have been studied by specific heat, magnetic susceptibility and electrical resistivity under high pressure. Two kind of high pressure cells were used, including cylinder Be-Cu cell and diamond anvil cell. The former is used for magnetic susceptibility measurements. The later is used for specific heat and electrical resistivity measurements.
    CeAl2 fermion system is antiferromagnetism ordering at Neél temperature TN= 3.8 K with Kondo temperature TK=5 K. Under high pressure TN increases initially and then decreases around P = 0.3 GPa. Since the antiferromagnetism originates from RKKY interactions and the exchange constant is a cosine function of the distance among magnetic Ce3+ ions, thus causing the variation of TN and with a maximum of TN = 4.34 K near 0.3 GPa. Moreover, the valence of Ce ions decreases from 3.058 to 3.004 as the pressure increases, this result might be explained by the scenario that the Ce 4f1 energy level is moved to lower energy, the further away from the Fermi level causes a less valence fluctuation with a more localization of the Ce ions. From the resistivity data and the fitting to , the coefficient A is decreased by applied pressure. Since Kondo temperature TK is linearly proportional to , thus and enhanced Kondo temperature is observed. From above results we anticipate that quantum critical point may appear at P= 3 GPa at which TN approaches to 0.
    K2Fe4Se5, is an interesting and complicated iron-based superconductor system. The superconductivity was observed at 33 K in K1.9Fe4.1Se5 through 750oC annealing. Based on BCS theory and specific data, ΔC/γTc is estimated to be 0.148 and the superconducting energy gap is calculated to 6.39 meV. In high pressure susceptibility measurements of K2Fe4Se5 with 300oC annealing, instead of the Verwey transition neat 120 K, no superconductivity was observed. The temperature of Verwey transition is slightly reduced. as pressure increases up to 1 GPa,
    Finally, the system Bi4O4S3 is a recently discovered superconductivity with transition temperature at 5 K in 2010. The superconductivity temperature Tc is reduced from 5 K to 4 K by applied pressure. Due to the entropy estimation from integrated from the peak of superconductivity in specific heat is not clear; in order to understand the system further work is needed.

    中文摘要………………………………………………………………………1 Abstract…………………………………………………………………………3 致謝………………………………………………………………………5 Contents……………………………………………………………………… …I List of Figures…………………………………………………………………IV List of Tables…………………………………………………………………VIII Chapter 1 INTRODUCTION………………………………………………1 1-1 Introduction of heavy fermions systems……………………………2 1-2 Introduction of high Tc superconductor ……………………………5 1-3 Outline of the dissertation…………………………………………10 Chapter 2 THEORETICAL BACKGROUND…………………………… 12 2-1 Landau-Fermi liquid theory……………………………………12 2-2 Kondo effect……………………………………………………15 2-2-1 Anderson model…………………………………………15 2-2-2 Single-impurity Kondo problem…………………………18 2-2-3 Kondo lattice……………… ………………………………22 2-3 BCS theory ……………… ………………………………………27 Chapter 3 EXPERIMENTAL METHODS…………………………………34 3-1 Sample preparation………………………………………………34 3-1-1 Are melting………………………………………………34 3-1-2 Others method……………………………………………37 3-2 High pressure magnetic susceptibility measurements……………38 3-2-1 Piston-cylinder cell…………………………………………38 3-2-2 Superconducting quantum interference device (SQUID) …41 3-2-3 Calculation of pressure gauges……………………………45 3-3 High pressure heat capacity measurements………………………47 3-3-1 Diamond anvil cell…………………………………………47 3-3-2 Thermal relaxation method………………………………50 3-3-3 3He cryogenic system………………………………………55 3-3-4 Ruby pressure gauge………………………………………57 3-4 High pressure electrical resistivity measurements………………60 3-4-1 Preparation of electrodes…………………………………60 3-4-2 Diamond anvil cell………………………………………63 3-5 Raman spectroscopy ……………………………………………64 3-5-1 Introduction of Raman spectroscopy……………………64 3-5-2 Setup of micro-Raman spectroscopy……………………65 Chapter 4 RESULTS AND DISCUSSION OF CeAl2 ……………………68 4-1 Introduction ………………………………………………………68 4-2 Magnetic susceptibility……………………………………………71 4-3 Specific heat………………………………………………………77 4-3-1 Specific heat at ambient pressure…………………………77 4-3-2 High pressure specific heat………………………………79 4-4 Electrical resistivity………………………………………………83 Chapter 5 RESULTS AND DISCUSSION OF HIGH Tc SUPERCONDUCTOR …………………………………………92 5-1 K2Fe4Se5…………………………………………………………92 5-1-1 Introduction………………………………………………92 5-1-2 Magnetic susceptibility…………………………………96 5-1-3 Specific heat……………………………………………100 5-2 Bi3O4S4…………………………………………………………104 5-2-1 Introduction……………………………………………104 5-2-2 Magnetic susceptibility…………………………………105 5-2-3 Specific heat……………………………………………107 Chapter 6 CONCLUSIONS ………………………………………………109 References……………………………………………………………………111

    1. Paul F. Mcmillan, Nature Materials 4, 715 (2005).
    2. James S. Schilling, Advances in Physics 28, 657 (1979).
    3. E. Wigner and H. B. Huntington, Jou. of Chem. Phys. 3, 764 (1935).
    4. H. K. Mao and R. J. Hemley, in Solid Hydrogen at Ultrahigh Pressures, ed. by W. A. Trzeciakowski. High Pressure Science and Technology: Proceedings of the Joint XV AIRAPT and XXXIII EHPRG International Conference (world Science 1996). pp. 505-510.
    5. D. E. MacLaughlin, in Magnetism in Heavy Fermion Systems, H. B. Radousky, ed., (2000).
    6. P. A. Lee, T. M. Rice, J. W. Serene, L. J. Sham and J. W. Wilkins, Comments Cond. Mat. Phys. 12, 99 (1986).
    7. K. Andres, J. E. Graebner and H. R. Ott, Phys. Rev. Lett. 35, 1779 (1975).
    8. P. Misra, Heavy Fermion systems, Elsevier (2008).
    9. J. Y. Cao, master thesis, Magnetic Properties of Heavy-Fermion Compounds, Tsing Hua university (1995).
    10. J. Kondo, Progress of Theoretical Physics 32, 37 (1964).
    11. Y. Y. Chen, PhD dissertation, Valence Fluctuations and Coherence in Cerium Based-Compounds, University of California Irvine (1987).
    12. P. Coleman, in Heavy Fermions: Electron at the Edge of Magnetism, ed. by H. Kronmüller and S. Parkin. Handbook of Magnetism and Advanced Magnetic Materials Vol.1 (Wiley, Chichester 2007). pp. 95-148
    13. H. Kamerlingh Onnes, Akad. van Wetenschappen (Amsterdam) 14, 113 (1911).
    14. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
    15. J.G. Bednorz and K.A. Miiller, Z. Phys. B: Condense Matter 64, 189 (1986).
    16. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).
    17. A. Mourachkine, Room Temperature Superconductivity, CISP (2004).
    18. W. Meissner and R. Ochsenfeld, Naturwissenschaften 21, 787 (1933).
    19. G. J. Sizoo and H. K. Onnes, Coommun. Phys. Lab. Univ. Leiden, No. 180b (1925).
    20. J. S. Schilling, in High-Pressure Effect, ed. by J. R. Schrieffer. Handbook of High-Temperature Superconductivity Theory and Experiment (Springer 2007). pp. 427-157.
    21. Neil W. Ashcroft and N. David Mermin, Solid State Physics, Thomson Learning (1976).
    22. L. D. Landau, Soviet Physics JETP 3, 920 (1957).
    23. C. Kittel, Introduction of Solid State Physics 8th ed., John Wiley and Sons (2005).
    24. G. Baym and C. Pethick, Landau Fermi-Liquid Theory: Concepts and Application, John Wiley and Sons (1991).
    25. R. Pietri, PhD dissertation, Magnetism and the Kondo Effect in Cerium Heavy- Fermion Compounds Cerim-Aluminum-3 and Cerium-Lead-3, University of Florida (2001).
    26. M. Sc. Village, PhD dissertation, Resistivity and Thermal Conductivity Measurements on Heavy-Fermion Superconductor in Rotating Magnetic Fields, der Technischen Universität Dresden (2012).
    27. P. W. Anderson, Phys. Rev. 124, 41 (1961).
    28. P. W. Anderson, Review of Modern Physics 50, 191 (1987).
    29. A. C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge University Press (1993).
    30. B. A. Jones, in Kondo Effect, ed. by H. Kronmüller and S. Parkin. Handbook of Magnetism and Advanced Magnetic Materials Vol.1 (Wiley, Chichester 2007). pp. 1-13
    31. N. E. Bickers, D. L. Cox and J. W. Wilkins, Phys. Rev. B 36, 2036 (1987).
    32. J. D. Thompson and J. D. Lawrence, Handbook on the Physics and Chemistry of Rare Earths 19, 383 (1994).
    33. P. W. Anderson,J. Phys. C: Solid St. Phys., 3, 2436 (1970).
    34. H. R. Krishna-murthy, Wilkins, and K. G. Wilson, Phys. Rev. B 21, 1003 (1980).
    35. S. Doniach, Physica B+C 91, 231 (1977).
    36. P. Fulde, Electron Correlations in Molecules and Solids 3rd ed., Springer (1995).
    37. S. K. Kim, PhD dissertation, Pressure Effect on Selected Correlated Electron Systems, Iowa State University (2013).
    38. L. N. Cooper, Phys. Rev. 104, 1189 (1956).
    39. M. Tinkham, Introduction to Superconductivity 2nd ed., Dover Publications (1996).
    40. M. A. Biondi, M. P. Garfunkel, and A. O. McCoubrey, Phys. Rev. 102, 1427 (1956).
    41. M. Tinkham, Phys. Rev. 104, 845 (1956).
    42. W. S. Corak, B. B. Goodman, C. B. Satterthwaite, and A. Wexler, Phys. Rev. 96, 1442 (1954); Phys. Rev. 102, 656 (1956).
    43. C. P. Poole, H. A. Farach and R. J. Creswick, Superconductivity, Academic Press (1995).
    44. W. Y. Tseng, master thesis, Pressure effects on superconductivity and magnetism in CePd2Si2 and Sr(Pd1-xNix)2Ge2 (2011).
    45. A. Eiling and J. S. Schilling, J. Phys. F: Metal Phys. 11, 623 (1981).
    46. Application Note easyLab Mcell 10 – 10 kbar hydrostatic pressure cell for Quantum Design MPMS measurement platform.
    47. N. Suresh and J. L. Tallon, Phys. Rev. B 75, 174502 (2007).
    48. J. F. Lin, J. Shu, H. K. Mao and R. J. Hemley, Review of Scientific Instruments, 74, 4732 (2003).
    49. Y. Y. Chen, P. C. Chen, C. B. Tsai, K. I. Suga, and K. Kindo, Int. J. Thermophys 30, 316 (2009).
    50. R. E. Schwall, R. E. Howard, and G. R. Stewart, Rev. Sci. Instrum. 46, 1054 (1975).
    51. R. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, Science 176, 284 (1972).
    52. J. D. Barnett, S. Block, and G. J. Piermarini, Rev. Sci. Instrum. 44, 1 (1973).
    53. H. K. Mao and P. M. Bell, Science 191, 851 (1976).
    54. H. K. Mao, P. M. Bell, J. W. Shaner, and D. J. Steinberg, J. Appl. Phys. 49, 3276 (1978).
    55. H. K. Mao, J. Xu, and P. M. Bell, J. Geophys. Res. 91, 4673 (1986).
    56. C.-S. Zha, H.-K. Mao, and R. J. Hemley, Proc. Nat. Acad. Sci. U.S.A. 97, 13494 (2000).
    57. H. Yamaoka, Y. Zekko, I. Jarrige, J. Lin, N. Hiraoka, H. Ishii, K. Tsuei and J. Mizuki, J. Appl. Phys. 112, 124503 (2012).
    58. Shibing Wang, PhD dissertation, Studying Bonding and Electronic Structures of Materials under Extreme Conditions, Stanford University (2011).
    59. A. M. Zaitsev, M. Burchard, J. Meijer, A. Stephan, B. Burchard, W. R. Fahrner, and W. V. Maresch, Phys. Status Solidi A 185, 59 (2001).
    60. H. Bureau, M. Burchard, S. Kubsky, S. Henry, C. Gondé, A. Zaistev, and J. Meijer, High Press. Res. 26, 251 (2006).
    61. C. Gondé, H. Bureau, M. Burchard, S. Henry, G. Simon, J. Meijer, and S. Kubsky, Rev. Sci. Instrum. 81, 023902 (2010).
    62. J. F. Lin, J. Shu, H. K. Mao and R. J. Hemley, Review of Scientific Instruments 74, 4732 (2003).
    63. W. M. Swift and W. E. Wallace, J. Phys. Chem. Solids 29, 2053 (1968).
    64. C. Deenadas, A. W. Thompson, R. S. Craig, and W. E. Wallace, J. Phys. Chem. Solids 32, 1853 (1971)
    65. F. Steglich, C. D. Bredl, M. Loewenhaupt and K. D. Schotte, J. Phys. (Paris), Colloq. 40, C5-301 (1979)
    66. C.R. Wang, Y.Y. Chen, Y.D. Yao, S.F. Pan, J.C. Ho, C.L. Chang, C.L. Huang, Physica B 284-288, 1738 (2000).
    67. T. L. Hung, master thesis, The Physical Properties in YBa2Cu3O7-δ and CeAl2 Nanoparticles, Tsu Hwa University (2008).
    68. M. Loewenhaupt and F. Steglich, Physica B+C 86–88, 187 (1977).
    69. K. Hanzawa, K. Yamada, and K. Yosida, J. Magn. Magn, Mat. 47&48, 357 (1985).
    70. M. Loewenhaupt, B. D. Rainford, and F. Steglich, Phys. Rev. Lett. 42, 1709 (1979).
    71. P. Thalmeier and P. Fulde, Phys. Rev. Lett. 49, 1588 (1982).
    72. N. E. Sluchanko, A. V. Bogach, V. V. Glushkov, S. V. Demishev, M. I. Ignatov, N. A. Samarin, G. S. Burkhanov, and O. D. Chistyakov, Journal of Experimental and Theoretical Physics 98, 793 (2004).
    73. G. Riblet and K. Winzer, Solid State Commun. 9,1663 (1971).
    74. G. Riblet and K. Winzer, Solid State Commun. 11,175 (1972).
    75. F. Steglich and H. Armbrüster, Solid State Commun. 14, 903 (1974).
    76. C.D. Bredl and F. Steglich, and K.D. Schotte, Z. Physik B 29, 327(1978).
    77. M. Loewenhaupt, S. Horn, and F. Steglich, Solid State Commun. 39, 295 (1981).
    78. S. Horn, W. Klamke and F. Steglich, in Valence Instabilities, P.Wachter and H. Boppart eds., North-Holland Publishing Company (1982).
    79. M. Nicolas-Francillon, A. Percheron, J.C. Achard, O. Gorochov, B. Cornut, D. Jerome, and B. Coqblin, Solid State Commun. 11, 845 (1972).
    80. C. Probst and J. Wittig, J. Magn. Magn, Mat. 9, 62 (1978).
    81. B. Barbara, J. Beille, B. Cheaito, J. M. Laurant, M. F. Rossignol, A. Waintal and S. Zemirli, J. Physique 48, 635 (1987).
    82. H. Miyagawa, G. Oomi, M. Ohashi, I. Satoh, T. Komatsubara, M. Hedo, Y. Uwatoko, Phys. Rev. B 78, 064403 (2008).
    83. A. Eichler, E. Hanke, and J. Michel, Physica B 194-196, 183 (1994).
    84. Y. Y. Chen, Y. D. Yao. B. C. Hu, C. H. Jang, J. M. Lawrence, H. Huang and W. H. Li, Phys. Rev. B 55, 5937 (1997).
    85. K. Kang and M. Lee, Current Applied Physics 14, 383 (2014).
    86. M. C. Croft, R. P. Guertin, L.C. Kupferberg, R. D. Parks, Phys. Rev. B 20, 2073 (1979).
    87. E. S. R. Gopal, Specific Heats at Low Temperatures, Plenum Press (1966).
    88. A. Yoshimori and H. Kasai, J. Magn. Magn. Mater. 31-34, 475 (1983).
    89. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc.130, 3296 (2008).
    90. F.C. Hsu, J.Y. Luo, K.W. Yeh, T.K. Chen, T.W. Huang, P. M. Wu, Yong-Chi Lee, Y L Huang, Y.Y. Chu, D.-C. Yan and M.K. Wu, Proc. Natl. Acad. Sci. U.S.A. 105, 14262 (2008).
    91. M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).
    92. X.C. Wang, Q.Q. Liu, Y.X. Lv, W.B. Gao, L.X. Yang, R.C. Yu, F.Y. Li, C.Q. Jin, Solid State Commun. 148, 538(2008).
    93. Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano, Appl. Phys. Lett. 93, 152505 (2008).
    94. K.W. Yeh, T. W. Huang, Y.L Huang, T.K. Chen, F.C. Hsu, P. M. Wu, Y. C. Lee, Y.Y Chu, C.L. Chen, J.Y. Luo, D.C. Yan and M.K. Wu, EPL 84, 37002 (2008).
    95. J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Phys. Rev. B 82, 180520 (2010).
    96. C.H. Wang, T.K. Chen, C.C. Chang, C.H. Hsu, Y.C. Lee, M.J. Wang, P. M. Wu and M.K. Wu: arXiv: 1502.01116.
    97. Y. Liu, Q. Xing, K. W. Dennis, R. W. McCallum, and T. A. Lograsso, Phys. Rev. B 82, 180520 (2010).
    98. D. P. Shoemaker, D. Y. Chung, H. Claus, M. C. Francisco, S. Avci, A. Llobet, and M. G. Kanatzidis, Phys. Rev. B 86, 184511 (2010).
    99. X. Ding, D. Fang, Z.Wang, H. Yang, J. Liu, Q. Deng, G. Ma, C. Meng, Y. Hu and H.H. Wen, Nat. commun. 4, 1987 (2013).
    100. W. Li, H. Ding, P. Deng, K. Chang, C. Song, K. He, L.Wang, X. Ma, J.P. Hu, X. Chen and Q.K. Xue, Nat. Phys. 8, 126 (2012).
    101. S. V. Carr, D. Louca, J. Siewenie, Q. Huang, A. Wang, X. Chen, and P. Dai, Phys. Rev. B 89, 134509 (2014).
    102. Z. Wang, Y. Cai, Z. W. Wang, C. Ma, Z. Chen, H. X. Yang, H. F. Tian, and J. Q. Li: arXiv: 1401.1001.
    103. J. Zhao, H. Cao, E. Bourret-Courchesne, D.H. Lee, and R. J. Birgeneau, Phys. Rev. Lett. 109, 267003 (2012).
    104. T.K. Chena, C.C. Chang, H.H. Chang, A.H. Fang, C.H. Wang, W.H. Chao, C.M. Tseng, Y.C. Lee, Y.R. Wu, M.H. Wen, H.Y. Tang, F.R. Chen, M.J. Wang, M.K. Wu, and D.V. Dyck, Proc. Natl. Acad. Sci. U.S.A. 111, 63 (2014).
    105. F. Walz, J. Phys: Condens. Matter 14, R285 (2002).
    106. G. Kh. Rozenberg, G. R. Hearne, and M. P. Pasternak, Phys. Rev. B 53, 6482 (1996).
    107. T.L. Hung, I.A. Chen, C.H. Huang, C.Y. Lin, C.W. Chen, Y.B. You, S.T. Jian, M.C. Yang, Y.Y. Hsu, J.C. Ho, Y.Y. Chen, and H.C. Ku, J. Low Temp. Phys. 171, 148 (2013)
    108. Y. Mizuguchi, H. Fujihisa, Y. Gotoh, K. Suzuki, H. Usui, K. Kuroki, S. Demura, Y. Takano, H. Izawa, and O. Miura, Phys. Rev. B 86, 220510 (2012).
    109. Y. Mizuguchi and Y. Takano, J. Phys. Soc. Japan. 79, 102001 (2010).
    110. R. Jha, A. Kumar, S. K. Singh, V. P. S. Awana, J. Sup. and Novel Mag. 26, 499 (2013).
    111. G. K. Selvan, M. Kanagaraj, S. E. Muthu, R. Jha, V. P. S. Awana, and S. Arumugam, Phys. Status Solidi RRL 7, 510 (2013)
    112. L. D. Jennings and C. A. Swenson, Phys. Rev. B 112, 31 (1958).
    113. B. Lorenz1 and C. W. Chu, High Pressure Effect on Superconductivity, Springer Berlin Heidelberg (2005).
    114. H. Takatsu, Y. Mizuguchi, H. Izawa,O. Miura, and H. Kadowaki, Journal of the Physical Society of Japan 81, 125002 (2012).
    115. R. K. Kuo, master thesis, the Physical Properties in CeAl2 Bulk, Film and Nanoparticles (1996).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE