簡易檢索 / 詳目顯示

研究生: 宋承陽
Sung, Cheng Yang
論文名稱: 二階及三階微擾計算熱電材料聲子傳播與熱電優值參數分析
Second and Third-order Perturbation Computations on Phonon Transport in Thermoelectric Materials and Parametric Analyses on the Figure of Merit
指導教授: 洪哲文
Hong, Che Wun
口試委員: 陳玉彬
陳信文
黃美嬌
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 80
中文關鍵詞: 量子力學奈米線熱傳導率熱電優值
外文關鍵詞: Quantum Mechanics, Nanowire, Thermal Conductivity, Figure of Merit
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   隨著經濟發展,能源的產生及使用成為了一個日漸重要的課題。其中,熱電材料是一個極具前瞻性的能源材料。「輕薄短小」為目前科技發展趨勢,對熱電材料來說,縮小尺度也可以增加其熱電轉換效率。本研究由計算量子力學出發,模擬奈米尺度熱電材料的熱傳情形,並透過計算分析得到材料的熱電相關性質,進而算出熱電優值(Figure of Merit, ZT),並依此數值評估一個熱電材料的優劣與否,之後再透過改變元素配比、摻雜以及改變結構的方式達到熱電優值的最佳化。
      模擬材料方面,由於現今熱電晶片大多使用稀土元素,本研究利用矽、鍺等較豐富的元素建構無機奈米線,先透過模擬塊材矽與實驗數據比對,確認計算方法的準確及適用性後,再開始計算奈米線。透過建立分子模型,以Kohn-Sham定理、平面波基底(Plane Wave Basis)、自洽場方法做幾何結構最佳化。接著以二、三階密度泛函微擾理論(Density Functional Perturbation Theory, DFPT)計算出奈米線的聲子頻散圖和聲子態密度圖等熱性相關圖表,再分析得到聲子群速度、熱容量、鬆弛時間後推得聲子熱傳導係數。電性方面,我們以密度泛函理論求得材料的能帶結構以及電子態密度圖,接著帶入一維波茲曼傳輸方程式(Boltzmann Transport Equation, BTE),搭配人工摻雜的概念求得電子傳導率、電子熱傳導率以及席貝克係數。最後,依據以上第一原理計算結果,計算出矽鍺奈米線之熱電優值。
      研究結論為無論奈米線是何種結構,低頻聲子主宰著材料熱傳;矽鍺核殼結構的奈米線則最能有效阻絕聲子的傳輸,因而擁有最低的聲子熱傳導率,並且在相同直徑的情況下,奈米線的熱傳導率隨著鍺殼厚度的增加而下降。


    As the economic develops, the production and usage of the energy has become an increasing important issue. Thermoelectric materials are one of the most promising energy material. At the same time, light and low dimension are the ways that technology develops nowadays. For thermoelectric materials, the reduction of the scale can also lead to higher conversion efficiency. We use computational quantum mechanics to simulate thermoelectric materials in nanoscale, and obtain their thermal and electrical properties, and then finally calculate the figure of merit to find out whether it is a good thermoelectric material. In the end, we aim to optimize the figure of merit by changing the composition, structure and doping.
    As a result of the commercial materials nowadays are rare and expensive, we choose silicon and germanium to set up our model. The study uses Kohn-Sham equation, plane wave basis and self-consistent field to optimize the model. After that, density functional perturbation theory (DFPT) is employed to calculate the phonon dispersion relation and phonon density of states, which can be further analyzed to achieve the group velocity, heat capacity, phonon relaxation time and finally the thermal conductivity. Next, we use density functional theory (DFT) to calculate the band structure and the density of states. Implementing the above parameters into the Boltzmann Transport Equation (BTE) and artificial doping, the electrical properties can be calculated.
    In conclusion, no matter what the structure the nanowire is, low frequency phonons dominate the heat transfer, while the silicon core germanium shell nanowire leads to the lowest thermal conductivity, and the thermal conductivity decreases with the increasing thickness of the germanium shell at the same nanowire diameter.

    摘要 I 表目錄 VII 圖目錄 VIII 符號表 X 第一章 緒論 1 1.1材料之熱電優值提升分析 4 1.1.1 席貝克係數和電子傳導率 5 1.1.2 操作溫度 7 1.1.3 熱傳導率 8 1.1.4 奈米結構 11 1.1.5 摻雜 12 1.2矽鍺與其奈米導線熱電材料文獻回顧 13 1.3三階微擾計算文獻回顧 14 1.4研究動機與目標 15 第二章 計算量子力學與固態物理理論 17 2.1 微擾理論 18 2.2 Born-Oppenheimer近似假設 20 2.3密度泛函理論 20 2.3.1 Kohn-Sham定理 21 2.3.2 Bloch定理 21 2.3.3自洽場計算 22 2.4密度泛函微擾理論 24 2.5原子震盪與聲子傳播 25 2.6動態矩陣與聲子頻散關係 28 2.7二階聲子熱傳導率 30 2.8三聲子交互作用 32 2.9聲子波茲曼傳輸方程式及三階聲子熱傳導率 36 2.10電子波茲曼傳輸方程式 42 第三章 模擬方法與模型建構 45 3.1模擬方法與計算流程 45 3.2矽鍺奈米線的建立 49 第四章 結果與討論 51 4.1塊材矽的相關性質 51 4.2矽鍺奈米線的熱相關性質 53 4.2.1 計算流程 53 4.2.2 奈米線晶胞大小 55 4.2.3 奈米線結構 59 4.2.4 奈米線核殼厚度 65 4.3矽鍺奈米線的電性相關性質 68 第五章 結論與未來工作建議 74 5.1 結論 74 5.2 未來工作建議 75 參考文獻 76

    [1] G-H. Kim, L. Shao, K. Zhang and K. P. Pipe, Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nature Materials, 12, p.719-723, 2013.
    [2] Z. G. Chen, G. Han, L. Yang, L. Cheng, J. Zou, Nanostructured thermoelectric materials: Current research and future challenge. Progress in Natural Science Materials, 22(6), p535-549, 2008.
    [3] J. Androulakis et al, Nanostructuring and High Thermoelectric Efficiency in p-Type Ag(Pb1 – ySny)mSbTe2 + m†, Advanced Materials, 18, 1170, 2006.
    [4] Joseph P. Heremans, Vladimir Jovovic, G. Jeffrey Snyder et al, Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States, Science, 321.5888, p.554-557, 2008.
    [5] G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nature materials 7.2 p.105-114, 2008.
    [6] K. Koumoto, I. Terasaki and R. Funahashi, Complex oxide materials for potential thermoelectric applications, Mrs Bulletin, 31(03), p.206-210, 2006.
    [7] M. Strasser, R. Aigner, M. Franosch, & G. Wachutka, Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining. Sensors and Actuators A: Physical, 97, p.535-542, 2002.
    [8] Mildred S. Dresselhaus et al. Si/SiGe superlattice structures for use in thermoelectric devices. U.S. Patent No 6,060,656, 2000.
    [9] T. Koga et al. Carrier pocket engineering to design superior thermoelectric materials using GaAs/AlAs superlattices. MRS Proceedings. Vol. 545. Cambridge University Press, 1998.
    [10] Q. Zhang et al. High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proceedings of the National Academy of Sciences 110.33, p.13261-13266, 2013.
    [11] C. Kittel, Introduction to Solid State Physics. 8th ed. John Wiley, 2005.

    [12] Wiedemann-Franz-Lorenz law. (n.d.) The Great Soviet Encyclopedia, 3rd Edition. ,1970-1979.
    [13] 徐淘韋(洪哲文指導), 有機與無機奈米線熱電晶片之電子聲子傳輸多尺度研究. 國立清華大學動力機械學系, 2015.
    [14] D. Donadio and G. Giulia, Atomistic simulations of heat transport in silicon nanowires, Physical review letters 102.19 : 195901, 2009.
    [15] Mildred S. Dresselhaus, Gang Chen, Ming Y. Tang, Ronggui Yang, Hohyun Lee, Dezhi Wang, Zhifeng Ren, Jean-Pierre Fleurial and Pawan Gogna, New directions for low-dimensional thermoelectric materials. Advanced Materials, 19, p.1043-1053, 2007.
    [16] T. Koga, S. B. Cronin, M. S. Dresselhaus, J. L. Liu, K. L. Wang, Experimental proof-of-principle investigation of enhanced Z3DT in (001) oriented Si/Ge superlattices. Applied Physics Letters, 77(10), p.1490-1492, 2000.
    [17] Y.-M. Lin, M. S. Dresselhaus, J. Y. Ying, in Advances in Chemical Engineering (Ed: K. Ricci), Academic, York, PA 2001, Ch.5, p.167-203.
    [18] S. H. Koenig, A. A. Lopez, Location of the Valence-Band Maximum in Bismuth, Physical Review Letter, 20, 48, 1968.
    [19] B. C. Sales, D. Mandrus, and R. K. Williams. Filled skutterudite antimonides: a new class of thermoelectric materials, Science 272.5266 : p.1325-1328, 1996.
    [20] G. S. Nolas et al. High figure of merit in partially filled ytterbium skutterudite materials, Applied Physics Letters 77.12 : p.1855-1857, 2000.
    [21] M. C. Steele and F. D. Rosi, Thermal Conductivity and Thermoelectric Power of Germanium-Silicon Alloys. Journal of Applied Physics, 29, p.1517-1520, 1958.
    [22] L. D. Hicks and M. S. Dresselhaus, Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit. Physical Review B, 47, p.12727-12731, 1993.
    [23] L. D. Hicks and M. S. Dresselhaus, Thermoelectric Figure of Merit of a One-Dimensional Conductor. Physical Review B, 47, p.16631-16634, 1993.
    [24] L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 53, p.10493-10496, 1996.
    [25] Akram I. Boukai, Yuri Bunimovich, Jamil Tahir-Kheli, Jen-Kan Yu, William A. Goddard III and James R. Heath, Silicon nanowires as efficient thermoelectric materials. Nature, 451, p.168-171, 2008.
    [26] Eun Kyung Lee et al, Large Thermoelectric Figure-of-Merits from SiGe Nanowires by Simultaneously Measuring Electrical and Thermal Transport Properties, Nano Letters, 12(6), p.2918-2923, 2012.
    [27] Troels Markussen, Surface Disordered Ge–Si Core–Shell Nanowires as Efficient Thermoelectric Materials, Nano Letters, 12(9), p.4698-4704, 2012.
    [28] D. A. Broido, A. Ward, N Mingo, Lattice thermal conductivity of silicon from empirical interatomic potentials, Physical Review B, 72, 2005.
    [29] Frank H. Stillinger and Thomas A. Weber, Computer simulation of local order in condensed phases of silicon, Physical Review B, 31, 5262, 1985.
    [30] João F. Justo, Martin Z. Bazant, Efthimios Kaxiras, V. V. Bulatov, and Sidney Yip, Interatomic potential for silicon defects and disordered phases, Physical Review B, 58, 2539, 1998.
    [31] J. Tersoff, Empirical interatomic potential for silicon with improved elastic properties, Physical Review B, 38, 9902, 1988.
    [32] R. Peierls , Zur kinetischen Theorie der Wärmeleitung in Kristallen, Ann. Physik 3, p.1055-1101, 1929.
    [33] Stefano Baroni, Paolo Giannozzi, and Andrea Testa, Elastic Constants of Crystals from Linear-Response Theory, Physical Review Letters 59, 2662, 1987.
    [34] Xavier Gonze, Adiabatic density-functional perturbation theory, Physical Review A 52, 1096, 1995.
    [35] Alberto Debernardi, Stefano Baroni, and Elisa Molinari, Anharmonic Phonon Lifetimes in Semiconductors from Density-Functional Perturbation Theory, Physical Review Letters 75, 1819, 1995.
    [36] D. A. Broido, M. Malorny, G. Birner, Natalio Mingo and D. A. Stewart, Intrinsic lattice thermal conductivity of semiconductors from first principles, Applied Physics Letters, 91, 231922, 2007.
    [37] Wu Li, L. Lindsay, D. A. Broido, Derek A. Stewart and Natalio Mingo, Thermal conductivity of bulk and nanowire Mg2SixSn1−x alloys from first principles, Physical Review B 86, 174307, 2012.
    [38] Atsushi Togo, Laurent Chaput, and Isao Tanaka, Distributions of phonon lifetimes in Brillouin zones, Physical Review B, 91, 094306, 2015.
    [39] Gordon B. Haxel, James B. Hedrick, and Greta J. OrrisRare, Earth Elements—Critical Resources for High Technology, U.S. Geological Survey , Fact Sheet 087-02.
    [40] Kohn Walter, Sham Lu Jeu, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review 140 (4A): A1133–A1138, 1965.
    [41] D. C. Wallace, Thermodynamics of Crystals, Dover, New York, 1998.
    [42] N.S Dhillon, Boltzmann Solver For Phonon Transport, Department of Mechanical Engineering, Purdue University.
    [43] R Peierls, Quantum Theory of Solids, Clarendon Press, Oxford, 1995.
    [44] P. A. M. Dirac, Proc. Roy. Soc. (London) A, 114, 243, 1927.
    [45] E. Fermi, Nuclear Physics, University of Chicago Press, 1950.
    [46] D. A. Broido, A. Ward, N Mingo, Lattice thermal conductivity of silicon from empirical interatomic potentials, Physical Review B, 72, 2005.
    [47] G. P. Srivastava, The Physics of Phonons, Adam Hilger, Bristol, Philadelphia and New York, 1990.
    [48] X. W. Wang et al, Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy, Applied Physics Letters 93.19,193121, 2008.
    [49] Ronggui Yang, Gang Chen, Mildred S. Dresselhaus, Thermal Conductivity Modeling of Core−Shell and Tubular Nanowires, Nano Letters, 5(6), pp1111-1115, 2005
    [50] P. D. Desai, Thermodynamic Properties of Iron and Silicon. Journal of Physical and Chemical Reference Data, 15, p.967-983, 1986.
    [51] H. R. Shanks, P. D. Maycock, P. H. Sidles and G. C. Danielson, Thermal conductivity of silicon from 300 to 1400 K. Physical Review, 130, p.1743-1748, 1963.
    [52] R. A. Serway, Principles of physics. 2nd ed. Saunders golden sunburst series, Fort Worth: Saunders College Pub. Xxxii, p.954, 1998.
    [53] P. Hyldgaard and G. D. Mahan, Phonon superlattice transport, Physical Review B 56.17, P.10754-10757, 1997.
    [54] Li. Deyu, A. Majumdar et al, Thermal conductivity of Si/SiGe superlattice nanowires, Applied Physics Letters 83.15, p.3186-3188, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE