簡易檢索 / 詳目顯示

研究生: 鄭信莉
Cheng, Hsin-Li
論文名稱: Studies on Miniaturized Field Gradient Components in Magnetic Resonance Micro-system
核磁共振微系統中微小化磁場梯度元件之研究
指導教授: 范龍生
Fan, Long-Sheng
齊正中
Chi, Cheng-Chung
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 169
中文關鍵詞: 核磁共振微系統微小化磁場梯度元件磁場元件
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Nuclear magnetic resonance (NMR) spectroscopy and MR imaging technique are the most powerful methods available for determining molecular structures and non-invasive 3D imaging. However, the current MRI resolutions are limited by the achievable SNR and sensitivity in a given time duration. We demonstrated that the miniaturization of MR Field components (RF and Gradient coils) and integration of associated elements using the mechanical technology can achieve higher sensitivity and less resolution. Chemical identification achieved with micro-coils in Bruker 1H 11.7-Tesla MR spectroscopy. Analytically solved, simulated, and MEMS fabricated the 6.1 miniaturized gradient components were used for a compact 3-Tesla desk-top magnet. Magnet thermal control system for temperatures stabilized within 0.01℃ is demonstrated. In Bruker 4.7-Tesla superconducting magnet, the finger-print x-, y-, and z- micro gradient components’ design achieved using the target field approach and Maxwell 3D simulation. MEMS fabricated coils measured with a Hall Effect Gauss meter were consistent with the simulation. Thus, significant improvements in MR sensitivity and magnetic field gradient by micro-sized RF and gradient components were generated for high-resolution MR imaging.


    1.Introduction 1 2.Theoretical Analysis: NMR principles, sensitivity, SNR, resolution, line-width, and the behavior of nuclei in an applied magnetic field 5 2.1 Nuclear Magnetic Resonance (NMR)phenomenon 6 2.2 Nuclear Magnetism 11 2.3 NMR Signal and Magnetization 14 2.4 Noise 16 2.5 Signal-to-noise ration of the Nuclear Magnetic Resonance 17 2.6 Sensitivity evaluation of RF coils 17 2.7 Chemical Shift 18 2.8 The detection limits’ comparison 19 2.9 Application of Nuclear Magnetic Resonance 20 2.10 The comparisons between High-field and Low-field NMR 21 2.11 Novel CryoProbes 26 3. MR System Hardware 29 3.1 The Magnet 31 3.2 The Probe 32 4. RF tuning and NMR probe’s mechanical design 35 4.1 RF tuning 35 4.2 NMR probe’s mechanical design 37 4.3 Design of RF Microcoils for NMR 39 4.4 Saddle Coil’s Thermal Distribution with various bias currents of 0mA to 500mA Using Infrared Imaging Microscope 42 5. Micro-NMR resolution measurement 43 5.1 Line-width analysis 43 5.2 Linewidth effects with magnetic capacitors 44 5.3 Micro-NMR testing with winding solenoidal micro-coil 48 5.4 A Desk-Top Magnetic Resonance Micro-system Test 53 6. RF Coils Design 59 6.1 Types of RF coils 59 6.2 Numerical Method and Calculation Procedure of RF coils 60 6.3 Integrated Detection Probe Design 64 7. Design and Implementation of MRI Gradient Coil 66 7.1 Principle of Magnetic Resonance Imaging (MRI) 67 7.2 Scaling of Magnetic Components 71 7.3 Gradient Coil Design for Conventional Superconducting Magnets 72 7.4 Design of Gradient coils for 3T Permanent Magnets76 7.5 The specification of the shimming coils for 3T- MRI permanent magnet 81 7.6 Implementation of the X-gradient coils design 82 8. Temperature Stability for a Compact Desk-Top 3-Tesla Nano-MR Magnet 91 8.1 Heat Transfer modeling 93 8.2 Thermal Resistance Circuits Design 96 8.3 Thermostatic channel (Heat pipe) 97 8.4 Fabrication of the Thermostatic Channels and Thermal Isolation 102 9. Transverse Fingerprint Coil (Gx and Gy) and Longitudinal Coil (Gz) Design for Bruker 200MHz (4.7 T) superconducting magnet where z is the magnetic axis 106 9.1 Design with Target Field Approach 108 9.2 Longitudinal Coil (Gz) Design 109 9.3 Transverse Fingerprint Coil (Gx and Gy) Design 113 9.4 Micro-fabrication and characterization of the Z-gradient coil Design 117 9.5 PCB Design for Z-gradient coil and RF Saddle coil 125 9.6 Magnetic field gradient measurement by using Gauss/Tesla meter 131 10. Conclusions and Discussions 133 Appendix A: The Analytic Solution Calculation for the Gradient Coils Design by using Maple v.6 134 Appendix B: Gradient Coils Design with Permanent Magnets calculating with Ansoft Maxwell 2D 142 Appendix C: Bruker NMR 1D spectrum operation 149 Appendix D: Non-magnetic air capacitors 150 References 152

    References
    [1] Jian-Ming Jin, “Electromagnetics in Magnetic Resonance Imaging”, IEEE
    Antennas and Propagation Magazine 40, pp.7-22, 1998.
    [2] Timothy L. Peck, Richard L. Magin, and Paul C. Lauterbur, “Design and analysis
    of microcoils for NMR microscopy,” Journal of magnetic resonance. Series B 108,
    pp. 114-124, 1995.
    [3] D. A. Seeber, J. H. Hoftiezer, W. B. Daniel, M. A. Rutgers, and C. H. Pennington,
    “Triaxial Magnetic Field Gradient System for Microcoil Magnetic Resonance
    Imaging,” Review of scientific instruments, 71, pp.4263-4272, 2000.
    [4] Luisa Ciobanu, “High resolution MR microscopy”, Ph.D. dissertation, The Ohio
    State University, 2002.
    [5]
    http://www.nmr.ibms.sinica.edu.tw/Doc/TrainingCours2002/Train2002_lecture.pd
    f
    [6] http://dupont.molbio.ku.dk/teach/course/introNMR.pdf.
    [7] D. I. Hoult and R. E. Richards, J. Magn. Reson. 24, pp.71, 1976.
    [8] Timothy L. Peck, Richard L. Magin, and Paul C. Lauterbur, “Design and analysis
    of microcoils for NMR microscopy,” Journal of magnetic resonance. Series B 108,
    pp. 114-124, 1995.
    [9] A. Abrragam, The Principle of Nuclear Magnetism, p. 82, Clarendon Press,
    Oxford, 1961.
    [10] L.D. Field and S. Sternhell, Analytical NMR, John Wiley & Sons Ltd., New
    York, 1989.
    [11] Robert McDermott, Andreas H. Trabesinger, Michael Muck, Erwin L. Hahn,
    Alexander Pines, John Clarke, Liquid-State NMR and Scalar Couplings on
    Microtesla Magnetic Fields, Science 295, pp. 2247-2249, 2002.
    [12] D. I. Hoult and R. E. Richards, The Sognal-to-Noise Ratio of the Nuclear
    Magnetic Resonance Experiment, Journal of Magnetic Resonance 24, pp. 71-85 ,
    1976.
    [13]C. W. C. Kaye and T. H. Laby, Table of Physical and Chemical Constants,
    Longmans Green, London, 1966.
    [14] http://pubs.acs.org/journals/tcwoe7/index.html
    [15] http://pubs.acs.org/subscribe/journals/tcaw/12/i12/pdf/1203techtools.pdf
    [16] http://www.bruker-biospin.com
    [17] 楊鴻昌,認識超導量子干涉元件,物理會刊,十一卷五期, 454-457 (1989).
    [18] Ya. S. Greenberg, Application of superconducting quantum inference devices to
    nuclear magnetic resonance, Reviews of Modern Physics 70: 175-222, 1998.
    168
    [19] Andreas H. Trabesinger, Robert McDermott, SeungKyun Lee, Michael Muck, ,
    John Clarke, and Alexander Pines, SQUID-Detected Liquid State NMR in
    Microtesla Fields, J. Phys. Chem. A 108: 957-963, 2004.
    [20] http://www.nscric.nthu.edu.tw/NMR/bionmr/bionmr.html.
    [21] http://www.cis.rit.edu/htbooks/nmr/inside.htm.
    [22] http://www.jeolusa.com/nmr/nmr.html.
    [23] Malcolm H. Levitt, Spin dynamics, New York, John Wiley & Sons, Ltd, 2001.
    [24] E. Fukushima and S.B.W. Roeder, Experimental Pulse NMR, Addison-Wesley,
    Reading, MA 1981.
    [25]http://www.nmr.ibms.sinica.edu.tw/Doc/TrainingCours2002/Train2002_lecture.p
    df
    [26] D. L. Olson, T. L. Peck, A. G. Webb, R. L. Magin, J. V. Sweedler, Science, 270,
    1995.
    [27] L. Ciobanu, C. H. Pennington, “3D micron-scale MRI of biological cells,” Solid
    State Nucl. Magn. Reson. 25, pp.138-141, 2004.
    [28] C. Massin, G. Boero, F. Vincent, J. Abenhaim, P. -A. Besse, R. S. Popovic,
    "High-Q factor RF planar microcoils for micro-scale NMR spectroscopy", Sensors
    & Actuators A: Physical, Vol 97, pp. 280-288, April 2002.
    [29] Long-Sheng Fan, “NanoMR (Magnetic Resonance) for molecular and cellular
    studies,” The Book of Abstracts of the Fourth International Symposium on
    Microchemistry and Microsystems, pp.18-19, Takamatsu, Japan, November 24-26,
    2004.
    [30] Long-Sheng Fan etc., “Magnetic resonance microsystems for life science
    applications,” Proc. of Transducers 2005, pp.1998-2001, Seoul, Korea, June 2005.
    [31] http://www.bruker-biospin.com/mri.html.
    [32] Zhi-Pei Liang and Paul C. Lauterbur, Principles of Magnetic Resonance Imaging,
    the Institute of Electrical and Electronics Engineering, New York, 2000.
    [33] http://www.cis.rit.edu/htbooks/mri/inside.htm.
    [34] Jianming Jin, Electromagnetic Analysis and Design in Magnetic Resonance
    Imaging, CRC Press, New York, 1999.
    [35] Robert Turner, “Gradient coil design: a review of methods”, Magn Reson
    Imaging. 11(7), pp.903-920, 1993.
    [36] Jingguo Wang, Manlio G. Abele, and Henry Rusinek, “Design of Gradient Coils
    for Permanent Magnets”, Journal of Magnetic Imaging 6(1), pp. 239-243, 1996.
    169
    [37] Peter B. Roemer, Schenectady, John S. Hickey, and Burnt Hills, “Self-shielded
    Gradient Coils for Nuclear Magnetic Resonance Imaging”, US Patent 4,737,716.
    Priority date Apr. 12, 1988.
    [38] John F. Schenck, “Axial Magnetic Field Gradient Coil Suitable for use with
    NMR Appartus”, US Patent 4,617,516. Priority date Oct. 14, 1986.
    [39] Micro Chemicals Inc, “Exposure and development”, 2003.
    [40] Incropera DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley& Sons,
    New York, 2002.
    [41] Jingguo Wang, Manlio G. Abele, and Henry Rusinek, Design of Gradient Coils
    for Permanent Magnets, Journal of Magnetic Imaging 6(1), pp. 239-243, 1996.
    [42] Bozorth, Richard M., Ferromagnetism, D. Van Nostrand Company, Inc., New
    Jersey, 1968.
    [43] Long-Sheng Fan, Shawn S. H. Hsu, Jun-De Jin, Cheng-Yu Hsieh, Wei-Chen Lin,
    H. C. Hao, Hsin-Li Cheng, Kuo-Chin Hsueh, Chen-Zong Lee, “Miniaturization of
    Magnetic Resonance Microsystem Components for 3D Cell Imaging”, ISSCC
    2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE