簡易檢索 / 詳目顯示

研究生: 吳俊忠
Chun-Chung Wu
論文名稱: Using 99mTc(I)-Histidine-Annexin V to image and monitor radiation-induced apoptosis in normal organs in mouse model
利用99mTc(I)-Histidine-Annexin V在老鼠模式中造影並監控輻射所引起之正常器官細胞凋亡
指導教授: 羅建苗
Jem-Mau Lo
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 44
中文關鍵詞: 鎝99m(I)三羰基離子組胺酸生物分佈細胞凋亡放射治療奈米型單光子/電腦斷層融合影像儀
外文關鍵詞: 99mTc(I)-tricarbonyl ion, apoptosis, nanoSPECT/CT, intestinal mucosa, 99mTc(I)-his-annexin V
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用之前本實驗室以分生技術合成在N端接有6個組胺酸 (histidine) 的annexin V (簡稱histidine-annexin V),以鎝99m(I)三羰基離子標誌histidine-annexin V製備所得99mTc(I)-histidine-annexin V造影劑,探討作為小腸內壁黏膜微血管內皮細胞或幹細胞凋亡造影劑之可行性。實驗方法:合成鎝99m(I)三羰基離子, [99mTc(CO)3(OH2)3]+進行直接標誌his-annexin V,所得99mTc(I)-histidine-annexin造影劑,以高效能液相層析(HPLC)鑑定其放化純度。利用經γ-ray照射Jurkat T cell作為細胞凋亡組以及未照射Jurkat T cell作為控制組,評估99mTc(I)-histidine-annexin V結合凋亡細胞之生物活性。在活體內試驗,一組實驗以經γ-ray全身照射之小鼠(實驗組)以及未經照射之小鼠(控制組) 分別注射99mTc(I)-histidine-annexin V,分別於5 分鐘、0.5、1.5、2、2.5及3小時後犧牲,取體內器官組織測量放射活度以評估生物分佈。另一組實驗以 99mTc(I)-histidine-annexin V注射入接受γ-ray全身照射不同劑量的實驗小鼠 (實驗組) 以及未接受γ-ray照射的實驗小鼠 (控制組) ,待兩小時後,藉由動物用奈米型單光子/電腦斷層融合影像儀(nanoSPECT/CT)進行造影。實驗結果: [99mTc(CO)3(OH2)3]+之合成產率可達90 %以上,99mTc(I)-histidine-annexin V之標誌產率可達90 %以上。由細胞實驗得知99mTc(I)-histidine-annexin V對凋亡細胞具高度親和性。由生物分佈結果得知,此造影劑在血液之廓清速率頗快,經半小時後已低於0.2 %ID/g。此快速血液廓清速率導致此造影劑在心臟及肝累積不高,相對的腎臟則有大量吸收,由此推論腎-膀胱應為主要排泄路徑。比較γ線照射過以及未經照射之小鼠:接受輻射造成小腸細胞凋亡,此造影劑有明顯的吸收,在照射後經2小時達最大累積量;無接受輻射照射小鼠,小腸部位此造影劑吸收劑量低。由nanoSPECT/CT影像經ROI分析,接受輻射之小鼠其小腸細胞凋亡影像隨接受輻射劑量(0, 8, 12 Gy)增加,其每單位cm3的放射劑量幾乎成比例增加。結論:本論文第一次以99mTc(I)-histidine-annexin V成功地以輻射照射小鼠模式作為小腸內壁黏膜微血管內皮細胞或幹細胞凋亡造影,對於癌症臨床放射治療造成正常器官之傷害提供一頗具潛力的偵測方法。


    謝誌 摘要 Abstract v Chapter 1 Introdution 1.1 Apoptosis 1.2 Annexin V 1.3 Purpose of the study Chapter 2 Materials and Methods 2.1 Synthesis of [99mTc(CO)3(OH2)3]+ 2.2 Radiolabeling of His-Annexin V with [99mTc(OH2)3(CO)3]+ 2.3 Cell Lines and Culture Condition 2.4 In vitro study 2.4.1 Induction of apoptosis 2.4.2 Binding Assay of 99mTc(I)-his-annexin V for apoptotic cells 2.5 Animal Model of Apoptosis 2.6 Dynamic Imaging for 10 Gy Absorbed Mice 2.7 Biodistribution 2.8 ROI Analyses of the Images of Varying Doses Absorbed Mice Chapter 3 Results 3.1 Synthesis of [99mTc(OH2)3(CO)3]+ 3.2 Radiolabeling of His-Annexin V with [99mTc(OH2)3(CO)3]+ 3.3 Binding of irradiated Jurkat T-cells with 99mTc(I)-his-annexin V 3.4 Dynamic Imaging for 10 Gy Absorbed Mice 3.5 Biodistribution 3.6 ROI Analyses of the Images of Varying Doses Absorbed Mice Chapter 4 Discussion Chapter 5 Conclusion References

    1. Kerr, J.F., A.H. Wyllie, and A.R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972. 26(4): p. 239-57.
    2. Blankenberg, F.G. and H.W. Strauss, Non-invasive diagnosis of acute heart- or lung-transplant rejection using radiolabeled annexin V. Pediatr Radiol, 1999. 29(5): p. 299-305.
    3. Cauchon, N., et al., PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V. Eur J Nucl Med Mol Imaging, 2007. 34(2): p. 247-58.
    4. Tang, X.N., et al., Monitoring the protective effects of minocycline treatment with radiolabeled annexin V in an experimental model of focal cerebral ischemia. J Nucl Med, 2007. 48(11): p. 1822-8.
    5. McConkey, D.J., Biochemical determinants of apoptosis and necrosis. Toxicol Lett, 1998. 99(3): p. 157-68.
    6. Fadok, V.A., et al., Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol, 1992. 148(7): p. 2207-16.
    7. Schroit, A.J. and R.F. Zwaal, Transbilayer movement of phospholipids in red cell and platelet membranes. Biochim Biophys Acta, 1991. 1071(3): p. 313-29.
    8. Williamson, P. and R.A. Schlegel, Back and forth: the regulation and function of transbilayer phospholipid movement in eukaryotic cells. Mol Membr Biol, 1994. 11(4): p. 199-216.
    9. Bevers, E.M., et al., Lipid translocation across the plasma membrane of mammalian cells. Biochim Biophys Acta, 1999. 1439(3): p. 317-30.
    10. Blankenberg, F.G., et al., Apoptosis: the importance of nuclear medicine. Nucl Med Commun, 2000. 21(3): p. 241-50.
    11. Cookson, B.T., et al., Organization of the human annexin V (ANX5) gene. Genomics, 1994. 20(3): p. 463-7.
    12. Huber, R., J. Romisch, and E.P. Paques, The crystal and molecular structure of human annexin V, an anticoagulant protein that binds to calcium and membranes. EMBO J, 1990. 9(12): p. 3867-74.
    13. Bohn, H. and W. Kraus, [Isolation and characterization of a new placenta specific protein (PP10) (author's transl)]. Arch Gynecol, 1979. 227(2): p. 125-34.
    14. Reutelingsperger, C.P., G. Hornstra, and H.C. Hemker, Isolation and partial purification of a novel anticoagulant from arteries of human umbilical cord. Eur J Biochem, 1985. 151(3): p. 625-9.
    15. Andree, H.A., et al., Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. J Biol Chem, 1990. 265(9): p. 4923-8.
    16. Weinman, S., Calcium-binding proteins: an overview. J Biol Buccale, 1991. 19(1): p. 90-8.
    17. Swairjo, M.A. and B.A. Seaton, Annexin structure and membrane interactions: a molecular perspective. Annu Rev Biophys Biomol Struct, 1994. 23: p. 193-213.
    18. van Heerde, W.L., P.G. de Groot, and C.P. Reutelingsperger, The complexity of the phospholipid binding protein Annexin V. Thromb Haemost, 1995. 73(2): p. 172-9.
    19. Fritzberg, A.R., et al., Specific and stable labeling of antibodies with technetium-99m with a diamide dithiolate chelating agent. Proc Natl Acad Sci U S A, 1988. 85(11): p. 4025-9.
    20. Tait, J.F., D. Gibson, and K. Fujikawa, Phospholipid binding properties of human placental anticoagulant protein-I, a member of the lipocortin family. J Biol Chem, 1989. 264(14): p. 7944-9.
    21. Walker, J.H., et al., Tissue and subcellular distribution of endonexin, a calcium-dependent phospholipid-binding protein. Biochem Soc Trans, 1990. 18(6): p. 1235-6.
    22. Romisch, J., et al., Annexins I to VI: quantitative determination in different human cell types and in plasma after myocardial infarction. Blood Coagul Fibrinolysis, 1992. 3(1): p. 11-7.
    23. Walker, J.H., et al., Annexin V, a calcium-dependent phospholipid-binding protein. Biochem Soc Trans, 1992. 20(4): p. 828-33.
    24. Kirsch, T., et al., The roles of annexins and types II and X collagen in matrix vesicle-mediated mineralization of growth plate cartilage. J Biol Chem, 2000. 275(45): p. 35577-83.
    25. Matteo, R.G. and C.S. Moravec, Immunolocalization of annexins IV, V and VI in the failing and non-failing human heart. Cardiovasc Res, 2000. 45(4): p. 961-70.
    26. Gerke, V. and S.E. Moss, Annexins: from structure to function. Physiol Rev, 2002. 82(2): p. 331-71.
    27. Zhang, G., et al., Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques, 1997. 23(3): p. 525-31.
    28. Smith-Jones PM, A.A., Zanzonico P, Tait J, Larson SM, Strauss HW, 68Ga labelling of annexin-V: comparison to 99mTc-annexin-V and 67Ga-annexin [abstract]. J Nucl Med, 2003. 44(5): p. 49P-50P.
    29. Kemerink, G.J., et al., Safety, biodistribution, and dosimetry of 99mTc-HYNIC-annexin V, a novel human recombinant annexin V for human application. J Nucl Med, 2003. 44(6): p. 947-52.
    30. Subbarayan, M., et al., A simplified method for preparation of 99mTc-annexin V and its biologic evaluation for in vivo imaging of apoptosis after photodynamic therapy. J Nucl Med, 2003. 44(4): p. 650-6.
    31. Liu, W.C., et al., Protection against radiation-induced bone marrow and intestinal injuries by Cordyceps sinensis, a Chinese herbal medicine. Radiat Res, 2006. 166(6): p. 900-7.
    32. Paris, F., et al., Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science, 2001. 293(5528): p. 293-7.
    33. Chen, Y.-L., Study on 99mTc(I) Labeled His-Annexin V as an Apoptosis- Detecting Radioligand, MS Thesis, National Tsing Hua University 2007.
    34. Egli, A., et al., Organometallic 99mTc-aquaion labels peptide to an unprecedented high specific activity. J Nucl Med, 1999. 40(11): p. 1913-7.
    35. Waibel, R., et al., Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)-carbonyl complex. Nat Biotechnol, 1999. 17(9): p. 897-901.
    36. Roger Alberto, R.S., Andre´ Egli, and August P. Schubiger, A Novel Organometallic Aqua Complex of Technetium for the Labeling of Biomolecules: Synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4]- in
    Aqueous Solution and Its Reaction with a Bifunctional Ligand. J Am Chem Soc, 1998. 120: p. 7987-7988.
    37. Zijlstra, S., J. Gunawan, and W. Burchert, Synthesis and evaluation of a 18F-labelled recombinant annexin-V derivative, for identification and quantification of apoptotic cells with PET. Appl Radiat Isot, 2003. 58(2): p. 201-7.
    38. Mansour, H.H., et al., Protective effect of N-acetylcysteine against radiation induced DNA damage and hepatic toxicity in rats. Biochem Pharmacol, 2008. 75(3): p. 773-80.
    39. Stratton, J.R., et al., Selective uptake of radiolabeled annexin V on acute porcine left atrial thrombi. Circulation, 1995. 92(10): p. 3113-21.
    40. Larsen, S.K., et al., [99mTc]tricine: a useful precursor complex for the radiolabeling of hydrazinonicotinate protein conjugates. Bioconjug Chem, 1995. 6(5): p. 635-8.
    41. Gudkov, A.V. and E.A. Komarova, The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer, 2003. 3(2): p. 117-29.
    42. Kobayashi, H., et al., L-lysine effectively blocks renal uptake of 125I- or 99mTc-labeled anti-Tac disulfide-stabilized Fv fragment. Cancer Res, 1996. 56(16): p. 3788-95.
    43. Lang, L., et al., Factors influencing the in vivo pharmacokinetics of peptides and antibody fragments: the pharmacokinetics of two PET-labeled low molecular weight proteins. Q J Nucl Med, 1997. 41(2): p. 53-61.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE