研究生: |
李建樑 Jang-Liang Li |
---|---|
論文名稱: |
奈米碳管的高頻電性量測分析及電路模型建立 Radio-Frequency Electrical Properties Measurement, Analysis, and Circuit Modeling of Carbon Nanotubes |
指導教授: |
蔡春鴻
Chueng-Horng Tsai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 111 |
中文關鍵詞: | 奈米碳管 、高頻量測 、頻率共振 |
外文關鍵詞: | carbon nanotube, RF measurement, frequency resonance |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文實驗上利用高溫化學氣相沉積法來製備奈米碳管,製程上可以分為兩個主軸,在實驗初期為在電極上做直接成長的奈米碳管製程,稱此為Pre-Electrode製程;以及實驗後期成長奈米碳管之後再覆蓋電極的製程方式,稱之為Post-Electrode製程。再利用向量式網路分析儀Vector Network Analyzer來量測其雙埠網路的高頻參數,來探討及比較奈米碳管的高頻特性。
兩種實驗的製程使用同樣的電極設計(GSG Coplanar Waveguide Transmission Line),尺度上的大小雖有差異,但其目的及原理都是配合高頻RF量測上的設計,需配合GSG共平面式RF探針的針距、與特性阻抗50歐姆的匹配電路。電極先後的製程,則是為了控制奈米碳管的成長密度、品質、以及高頻分析時的準確性,而設計了較複雜的Post-Electrode製程。藉由e-Beam電子束微影來製作微米等級的GSG傳輸線,能較精確地量測單根或少根單壁奈米碳管的高頻性質。
在本文有限的實驗數據中,能指出具有奈米碳管的樣品在高頻RF量測上,皆有發現低頻率共振的現象。推論應為奈米碳管獨具的強電感值造成LC共振增強而使得頻率響應發生在低頻率範圍(小於10GHz),由對照組的實驗及簡化的電路模型可以驗證之。
由於高頻與奈米領域的結合的研究領域仍在發展的初步階段,本文實驗的過程中仍有些問題與困難待改善,相信隨著在製備奈米碳管方面、微製造方面、及準確的高頻量測設計平台的漸漸改良進步下,能量測到奈米碳管更精確的RF特性,並期許奈米碳管在RF上也能有許多前瞻的應用。
Our nanotubes were growth from lithographically patterned thin film catalyst structures using thermal-CVD. There are two majors experimental axial processes. The initial experiments called “Pre-Electrode” were in-situ grow carbon nanotubes on the electrodes. The latterly experiments called “Post-Electrode” were evaporated electrodes after the thermal-CVD process. Next, we measure the RF parameters (S-parameter, ex: reflection coefficient ) of our samples to find the RF properties of two-ports network.
We designed the same electrode layout for “Pre-Electrode” and “Post-Electrode” processes. The GSG coplanar waveguide transmission line was designed for matching the RF probes and characteristic impedance 50 Ohms matching circuit. We used e-Beam lithography technique to fabricate the micro-transmission lines for the “Post-Electrode” process. Thus, we could control the density and quality of nanotubes to truly measure RF signals of individual SWNT.
All we find the LC resonance at the lower microwave frequencies (<10GHz) for carbon nanotubes samples. To present the demonstration of single-walled carbon nanotubes served as the strong inductors. In contrast, there was no this effects for the other samples without carbon nanotubes. We construct a simple LC impedance-matching circuit to fitting the experiment data.
[1] T. V. Hughes, C. R. Chamber, U. S. Patent., (1889), 405-480.
[2] J. A. E. Gibson, Nature, (1992), 359-369.
[3] R. J. Bacon, Applied Physics, (1960), 31-283.
[4] P. G. Wiles, J. Abrahamson, Carbon., (1978), 16-341.
[5] P. W. Fowler, Chem. Soc-Faraday Trans., (1990), 86-2073.
[6] 大澤映二, 化學(日), (1980), 25-854.
[7] H. W. Kroto, J. R. Heath, S. C. O. Brien, et al., Nature., (1985), 162-318.
[8] W. Krastschmer, L. D. Lamb, K. Fortiropoulos, et al., Nature., (1990), 347-354.
[9] S. Iijima., Nature., (1991), 56-354
[10] S. J. Tans, A. R. M. Verschueren, C. Dekker, et al., Nature. 393, (1998) ,49-52.
[11] P. G. Collins, M. S. Arnold, P. Avouris. Science. 292, (2001), 706.
[12] P. Ball, Nature.414, (2001), 142.
[13] P. L. McEuen, M. Fuhrer, H. Park, IEEE Trans. Nano. 1, (2002), 78-85.
[14] R. F. Service, Science. 281, (1998), 940.
[15] L. Chico, L. X. Benedict, S. G. Louie, et al., Phys. Rev. B. 54, (1996), 2600.
[16] S. Frank, P. Poncharal, Z. L. Wang, et al., Science. 280, (1998), 1744.
[17] C. T. White, T. N. Todorov, Nature. 411, (2001), 649.
[18] P. J. Burke, IEEE Trans. Nano. 1, (2002), 129-144.
[19] P. J. Burke, IEEE Trans. Nano. 2, (2003), 55-58.
[20] P. J. Burke, Proceedings of the 3rd IEEE Conference on Nanotechnology 1, (2003), 314-315.
[21] P. J. Burke, Solid State Electron. 48, (2004), 1981-1986.
[22] L. Roschier, H. Hakonen, K. Bladh, P. Delsing, K. W. Lehnert, L. Spietz, R. J. Schoelkopf, J. Appl. Phys. 95, (2004), 1274-1286.
[23] S. Li, Z. Yu, S. F. Yeng, W. C. Tang, P. J. Burke, Nano Letters 4, (2004), 753-756.
[24] S. Iijima, Nature 354, (1991), 56.
[25] S. Iijima, T. Ichihashi, Nature 363, (1993), 603.
[26] D. S. Bethune, C. H. Kiang, M. S. Devries, Nature 363, (1993), 605.
[27] G. Dresselhaus, M. S. Dresselhaus, P. Avouris, “Carbon Nanotubes: Synthesis, Structure, Properties, and Applications”, Springer, (2001).
[28] N. Hamada, S. I. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, (1992), 1579.
[29] J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 68, (1992), 631.
[30] R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett. 60, (1992), 2204.
[31] R. Saito, M. S. Dresselhaus, G. Dresselhaus, “Physical Properties of Carbon Nanotubes”, Imperial College Press, (1998).
[32] N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, (1992), 1579.
[33] C. T. White, T. N. Todorov, Nature 393, (1998), 240.
[34] Z. H. Zhang, J. C. Peng, H. Zhang, Appl. Phys. Lett. 79, (2001), 3515.
[35] H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker, Science 293, (2001), 76.
[36] M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, T. Balents, P. L. McEuen, Nature 397, (1999), 598.
[37] C. V. Raman, K. S. Krishnan, Nature 121, (1928), 501.
[38] R. W. Wood, Nature 122, (1928), 349.
[39] D. A. Long, “The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules.”, John Wiley & Sons Inc., (2001).
[40] 蔡淑慧, 奈米通訊12卷2期, 民國94年.
[41] R. Saito, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 61, (2000), 2981.
[42] A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. Ünlü, B. B. Goldberg, M. A. Pimenta, J. H. Hafner, C. M. Lieber, and R. Saito , Phys. Rev. B 65, (2002), 155-412.
[43] R. Saito, A. Jorio, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 64, (2001), 085-312.
[44] 呂文嘉, 袁杰, 高頻電路設計分析與設計(一), 民國85年.
[45] 卓聖鵬編譯, 高頻與微波量測, 民國90年.
[46] 何中庸編譯, 高頻電路設計基礎, 民國90年.
[47] D. M. Pozar, “Microwave Engineering”, John Wiley and Sons Inc. 3 edition, (2004).
[48] W. S. Cheung, F. H. Levien, “Microwaves Made Simple: Principles and Applications”, Artech House Publishers, (1985).
[49] S. Wartenberg, “RF Measurement of Die and Packages”, Artech House Publishers, (2002).
[50] 徐正平, 林進康, 課程: Spectrum Analyzer, Noise Figure Analyzer, 安捷倫高科系學苑.
[51] 張志揚教授, 課程: 微波量測原理, 國立交通大學電信工程系.
[52] Peter J. Burke, IEEE Trans. on Nanotech. 1, (2002), 129-144.
[53] S. Tomonaga, Progress of Theoretical Physics 5, (1963), 554.
[54] J. Luttinger, Journal of Mathematical Physics, 4, (1963), 1154.
[55] M. W. Bockrath, “Carbon nanotubes: electrons in one dimension,” Ph.D. dissertation, Univ. California, Berkeley, CA, (1999).
[56] S. Ramo, J. R. Whinnery, T. V. Duzer, “Fields and Waves in Communication Electronics” , Wiley 3 edition, (1994).
[57] S. Li, Z. Yu, S. F. Yeng, W. C. Tang, P. J. Burke, Nano Letters 4, (2004), 753.
[58] S. Li, Z. Yu, C. Rutherglen, P. J. Burke, Nano Letters 4, (2004), 2003.
[59] T. Durkop, S. A. Getty, E. Cobas, M. S. Fuhrer, Nano Letter 4, (2004), 35.
[60] S. Li, Z. Yu, S. F. Yen, W. C. Tang, P. J. Burke, Nano Letter 4, (2004), 753.
[61] A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. J. Dai, Nature 424, (2003), 654.
[62] H. Cui, G. Eres, J. Y. Howe, A. Puretkzy, M. Varela, D. B. Geohegan, Chem. Phys. Lett. 374, (2003), 222.
[63] L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen, M. Meyyappan, Chem. Phys. Lett. 348, (2001), 368.
[64] R. Seidel, M. Liebau, G. S. Duesberg, F. Kreupl, E. Unger, A. P. Graham, W. Hoenlein, Nano Lett. 3, (2003), 965.
[65] http://www.mwoffice.com/products/mwoffice