簡易檢索 / 詳目顯示

研究生: 蔡志宗
Chih-Tsung Tsai
論文名稱: 超臨界流體於低溫元件製程技術之應用與研究
Study of Supercritical Fluid Technology for Low-Temperature Fabrication of Semiconductor Devices
指導教授: 葉鳳生
Fon-Shan Yeh
張鼎張
Ting-Chang Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 123
中文關鍵詞: 超臨界流體奈米碳管氧化鉿薄膜氧化矽薄膜電阻式記憶體材料非晶矽薄膜電晶體
外文關鍵詞: Supercritical fluid, Carbon nanotubes, Hafnium oxide layer, Silicon oxide film, Resistive switching memory material, Amorphous silicon thin film transistor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超臨界流體是一種同時具有氣體高擴散性與液體高負載能力的流體,可以有效地將物質由微、奈米結構中萃取出來,並且避免結構上的破壞。在本論文研究中,首先,我們應用超臨界流體技術於去除吸附在奈米碳管表面的水氣。由實驗結果得知,添加修飾劑的超臨界流體在50 °C的低溫下即能有效地去除奈米碳管表面吸附的水氣,大幅提高奈米碳管的場發射效率與可靠度;而超臨界流體的壓力對於去除水氣的效果也有著非常顯著的影響。反觀之,超臨界流體也具有攜帶分子進入奈米結構的能力。藉此我們發展出一套嶄新的低溫鈍化薄膜缺陷的技術,利用超臨界流體將氧化劑帶入濺鍍沉積的氧化鉿薄膜內,成功地在150 °C的低溫環境下鈍化薄膜內的缺陷;從各種材料分析中,驗證超臨界流體確實可有效的將氧化劑帶入薄膜內並且透過氧化劑完成缺陷鈍化反應。經過超臨界流體處理後,薄膜的漏電機制由原先的量子穿隧效應轉變為熱激發效應,因此漏電流密度由10-2大幅地降低到10-7(安培/公分2);除此之外,處理後的氧化鉿薄膜也具有較佳的電容-電壓曲線與較低的等效氧化矽厚度(equivalent oxide thickness)。
    接下來,我們運用超臨界流體鈍化缺陷技術於電子槍蒸鍍沉積的氧化矽薄膜,在150 °C的低溫下改變氧化矽能隙內的缺陷密度,進而製作出電阻式記憶體材料;由實驗結果證實,氧化矽薄膜在經過處理後不但具有較佳的介電特性,並且也同時擁有高、低電阻狀態的特性,其電阻狀態可透過外加偏壓所決定。從研究分析中發現,這種可切換電阻狀態的特性與薄膜內的缺陷數目具有很高的關連性。當氧化矽薄膜的能隙中內具有較多缺陷時,則具有較低的電阻切換電壓,且訊號保存時間(retention time)較短;然而,當缺陷數目減少後,其電阻切換電壓將會提高,而訊號保存時間也明顯延長。
    最後,我們利用超臨界流體鈍化缺陷技術於改善非晶矽薄膜電晶體特性,減少非晶矽薄膜內的矽懸鍵;在經過處理後,非晶矽薄膜電晶體具有較佳的元件特性,例如: 關閉電流(Off-current)、非晶矽薄膜能隙中的缺陷密度(Density of states)、臨界電壓(Threshold voltage)與次臨界擺幅(Subthreshold swing)等都具有明顯的改善。


    Supercritical fluid owns the gas-like and liquid-like properties to extract matter from micro- and nano-structure without damage. In this paper, firstly, we apply the supercritical fluid technology to remove the moisture absorbed in carbon nanotube emitters. From experimental results, it is verified that the supercritical mixed with co-solvent could take moisture away operatively from carbon nanotubes at 50 °C, and the activated field carbon nanotubes have superior emission performance and electrical stability. Besides, the pressure of supercritical fluid would influence the efficiency of activating carbon nanotube emitters. Except extracting, it is allowed also for supercritical fluid to transport molecule into nano-structure. Therefore, we propose originally a low-temperature process for passivating traps by supercritical fluid. In our experiment, the supercritical fluid had delivered successfully the oxidants into sputter-deposited hafnium oxide layer to terminate traps at 150 °C. The material analyses report that the traps were passivated by oxidizing with oxidants. After the proposed treatment, the leakage current density of hafnium oxide is reduced significantly from 10-2 to 10-7 A/cm2, due to the conduction mechanism transformed from quantum tunneling to thermionic emission. The better capacitance-voltage curve and lower equivalent oxide thickness are achieved in addition.
    Next, the supercritical fluid technology is used to vary the traps density in band gap of electron-gun evaporation deposited silicon oxide films to produce the resistive switching memory material at 150 °C. The post-treated silicon oxide film exhibits superior dielectric characteristics and a resistive switching between high resistance state and low resistance state which is controlled by applied bias voltage. From experimental results, it is observed that the bistable resistance states are relative to the amount of traps. The silicon film with more traps would present lower voltages of switching resistance state and inferior retention property. Nevertheless, for the silicon film with fewer traps, the higher voltages of switching resistance state are required, and a longer retention property is achieved.
    Finally, the application of supercritical fluid technology on improving amorphous silicon thin film transistors is investigated. The transfer characteristics, such as off-current, density of states in middle gap of amorphous silicon, threshold voltage and subthreshold swing, have been enhanced by passivating Si dangling bonds.

    Chinese Abstract I English Abstract III Acknowledgement V Contents VII Table Captions IX Figure Captions X Chapter 1 Introduction 1.1 Supercritical Fluid Technology 1 1.2 General Background 1.2.1 Carbon Nanotubes (CNTs) 5 1.2.2 Metal Oxide Dielectric Film (High Dielectric Constant Material) 6 1.2.3 Resisitive Random Access Memory (RRAM) 8 1.2.4 Amorphous Silicon Thin Film Transistor (a-Si:H TFT) 10 1.3 Thesis Outline 11 Chapter 2 Activating Carbon Nanotube Emitters by Supercritical Fluid 2.1 Introduction 14 2.2 Activation Process 16 2.3 Field Emission Characteristics of Activated CNT Emitters 18 2.4 Summary 28 Chapter 3 Low-Temperature Enhancement of Sputter-Deposited HfOx Films by Supercritical Fluid 3.1 Introduction 29 3.2 Treatments of Passivating Traps in HfOx film 30 3.3 Material Analysis 31 3.4 Electrical Characteristics Analysis 44 3.5 Summary 64 Chapter 4 Preparation of SiOx-Based Resistive Switching Memory Material Utilizing Supercritical Fluid Technology 4.1 Introduction 65 4.2 Fabrication Process 66 4.3 Material Analysis 68 4.4 Capacitance-Voltage Curves and Current Properties 73 4.5 Summary 85 Chapter 5 Application of Supercritical Fluid on Improving Amorphous Silicon Thin Film Transistors (a-Si:H TFTs) 5.1 Introduction 86 5.2 Treatments of Passivating Defects in a-Si:H Film 87 5.3 Baking-Only Treated a-Si:H TFT 89 5.4 3000 psi-SCCO2 Treated a-Si:H TFT 96 5.5 Effect of SCCO2 Treatment on SiNx Film 102 5.6 Summary 107 Chapter 6 Conclusion 108 References 110 Vita 120 Publication List 121

    [1]. K. Zosel and Angew, “Separation with supercritical gases: Practical applications”, Chem. Int. Ed. Engl., vol. 17, no. 10, pp. 702-709, 1978.
    [2]. P. M. F. Paul and W. S. Wise, “The principles of gas extraction”, London: Mills&Boon Ltd., 1971.
    [3]. J. F. Brennecke and C. A. Eckert, “Phase equilibria for supercritical fluid process design”, AIChE Journal, vol. 35, no. 9, pp. 1049-1427, 1989.
    [4]. J. B. Rubin et al., “A comparison of chilled DI water/ozone and CO2-based supercritical fluids as replacements for photoresist-stripping solvents”, IEEE/CPMT Int'l Electronics Manufacturing Tech Sym., pp. 308-314, 1998.
    [5]. L. B. Rothman, R. J. Robey, M. K. Ali, and D. J. Mount, “Supercritical fluid processes for semiconductor device fabrication”, IEEE/SEMI Adv. Semiconductor Manufacturing Conf., pp. 372- 375, 2002.
    [6]. W. H. Mullee, M. A. Biberger, and P. E. Schilling, United States Patent, Patent 6500605 B1, 2002.
    [7]. M. A. Biberger, P. Schilling, D. Frye, and M. E. Mills, “Photoresist and photoresist residue removal with supercritical CO2–A novel approach to cleaning wafers”, Semiconductor Fabtech, 12th Ed., pp. 239-243, 2005.
    [8]. S. Gangopadhyay, J.A. Lubguban, B. Lahlouh, G. Sivaraman, K. Biswasa, T. Rajagopalan, N. Biswas, H. C. Kim, W. Volksen and R. D. Miller, “Supercritical CO2 treatments for semiconductor applications”, Mat. Res. Soc. Symp. Proc., vol. 812, pp. F4.6.1-F4.6.6, 2004.
    [9]. S. Ijima, “Helical microtubes of graphitic carbon”, Nature, vol. 354, pp. 56-58, 1991.
    [10]. O. M. Küttel, O. Groening, C. Emmenegger, and L. Schlapbach, “Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma”, Appl. Phys. Lett., vol. 73, no. 15, pp. 2113-2115, 1998.
    [11]. S. Uemura, J. Yotani, T. Nagasako, Y. Saito and M. Yumura, “Carbon nanotube FED high-luminance triode panel”, Euro Display’99 Proc., pp. 93-96, 1999.
    [12]. Y. Tomihari, F. Ito, Y. Okada, K. Konuma, and A. Okamoto, “Multi-layered triode cathode developed for CNT FED”, IDW’01 Proc., pp. 1213-1216, 2001.
    [13]. W. I. Milne, K. B. K. Teo, M. Chhowalla, P. Legagneux, G. Pirio and D. Pribat, “Electron emission from self-aligned carbon nanotube field emission microcathodes”, SID’02 Digest Proc., pp. 1120-1123, 2002.
    [14]. G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High- k gate dielectrics: Current status and materials properties considerations”, J. Appl. Phys., vol. 89, no. 10, pp. 5243-5275, 2001.
    [15]. S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum-mechanical modeling of electron tunneling current from theinversion layer of ultra-thin-oxide nMOSFET's”, IEEE Electron Dev. Lett., vol. 18, no. 5, pp. 209-211, 1997.
    [16]. B. Y. Tsui and H. W. Chang, “Formation of interfacial layer during reactive sputtering of hafnium oxide”, J. Appl. Phys., vol. 93, no. 12, pp. 10119, 2003.
    [17]. S. Sayan, N. V. Nguyen, J. Ehrstein, T. Emge, E. Garfunkel, M. Croft, X. Zhao, D. Vanderbilt, I. Levin, E. P. Gusev, H. Kim, and P. J. McIntyre, “Structural, electronic, and dielectric properties of ultrathin zirconia films on silicon”, Appl. Phys. Lett., vol. 86, no 15, pp. 152902, 2005.
    [18]. M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura, and T. Nabatame, “Rutile-type TiO2 thin film for high-k gate insulator”, Thin Solid Films, vol. 424, no. 2, pp. 224-228 , 2003.
    [19]. V. A. Gritsenko, K. A. Nasyrov, Yu. N. Novikov, A. L. Aseev, S. Y. Yoon, Jo-Won Lee, E. -H. Lee, and C. W. Kim, “A new low voltage fast SONOS memory with high-k dielectric”, Solid-State Electron., vol. 47, no. 10, pp. 1651-1656, 2003.
    [20]. J. H. Chen, Y. Q. Wang, W. J. Yoo, Y.-C. Yeo, G. Samudra, D. S. H. Chan, A. Y. Du, and D. L. Kwong, “Nonvolatile flash memory device using Ge nanocrystals embedded in HfAlO high-k tunneling and control oxides”, IEEE Trans. Electron Devices, vol. 51, no. 11, pp. 1840-1848, 2004.
    [21]. C. Bartic, H. Jansen, A. Campitelli, and S. Borghs, “Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors”, Organic Electron., vol. 3, no. 2, pp. 65-72, 2002.
    [22]. D. K. Hwang, K. Lee, J. Hoon Kim, S. Im, C. S. Kim, H. K. Baik, J. H. Park, and E. Kim, “Low-voltage high-mobility pentacene thin-film transistors with polymer/high-k oxide double gate dielectrics”, Appl. Phys. Lett., vol. 88, no. 24, pp. 243513, 2006.
    [23]. K. Lee, J. H. Kim, S. Im, C. S. Kim, and H. K. Baik, “Low-voltage-driven top-gate ZnO thin-film transistors with polymer/high-k oxide double-layer dielectric”, Appl. Phys. Lett., vol. 89, no. 13, pp. 133507, 2006.
    [24]. W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Ignatiev, “Novell colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM)”, IEDM Tech. Dig. Proc., pp. 193-196, 2002.
    [25]. K. Kim, J. H. Choi, J. Choi, and H.-S. Jeong, “The future prospect of nonvolatile memory,” VLSI-TSA Symp. Proc., pp. 88-94, 2005.
    [26]. C. Rossel, G. I. Meijer, D. Bre´maud, and D. Widmer, “Electrical current distribution across a metal–insulator–metal structure during bistable switching”, J. Appl. Phys., vol. 90, no. 6, pp. 2892-2898, 2001.
    [27]. S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park “Reproducible resistance switching in polycrystalline NiO films”, Appl. Phys. Lett., vol. 85, no. 23, pp. 5655-5657, 2004.
    [28]. K. Aratani, K. Ohba, T. Mizuguchi, S. Yasuda, T. Shiimoto, T. Tsushima, T. Sone, K. Endo, A. Kouchiyama, S. Sasaki, A. Maesaka, N. Yamada, and H. Narisawa, “A novel resistance memory with high scalability and nanosecond switching”, IEDM Tech. Dig. Proc., pp. 783-786, 2007.
    [29]. R. Sezi, A. Walter, R. Engl, A. Maltenberger, J. Schumann, M. Kund, and C. Dehm, “Organic materials for high-density non-volatile memory applications”, IEDM Tech. Dig. Proc., pp. 259-262, 2003.
    [30]. I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D.-S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U-In Chung and I. T. Moon, “Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses”, IEDM Tech. Dig. Proc., pp. 587-590, 2004.
    [31]. P. G. LeComber, W. E. Spear, and A. Ghaith, “Amorphous-silicon field-effect devices and possible applications”, IEEE Electron. Lett., vol. 15, no. 6, pp. 179-181, 1979.
    [32]. W. Zhao and J. A. Rowlands, “X-ray imaging using amorphous selenium: Feasibility of a flat panel self-scanned detector for digital radiology”, Medical Physics, vol. 22, no. 10, pp. 1595- 1604, 1995.
    [33]. R. A. Street, “Large area image sensor arrays”, Technology and Applications of Hydrogenated Amorphous Silicon, Ed. R. A. Street, pp. 147-218, 2000.
    [34]. A. J. Snell, K. D. Mackenzie, W. E. Spear, P. G. LeComber, and A. J. Hughes, “Application of amorphous silicon field effect transistors in addressable liquid crystal display panels”, Appl. Phys. A: Materials Science & Proc., vol. 24, no. 4, pp. 357-362, 1981.
    [35]. T. Tsukada, “Active-matrix liquid-crystal Displays”, Technology and Applications of Hydrogenated Amorphous Silicon, Ed. R. A. Street, pp. 7-93, 2000.
    [36]. R. M. A. Dawson and M. G. Kane, “Pursuit of active matrix organic light emitting diode displays”, SID’01 Digest Proc., pp. 372-375, 2001.
    [37]. D. Stryahilev, A. Sazonov, and A. Nathan, “Amorphous silicon nitride deposited at 120 °C for organic light emitting display-thin film transistor arrays on plastic substrates”, J. Vac. Sci. and Technol. A, vol. 20, no. 3, pp. 1087-1090, 2002.
    [38]. T. W. Ebbesen and P. M. Ajayan, “Large-scale synthesis of carbon nanotubes”, Nature, vol. 358, pp.220-222, 1992.
    [39]. S. T. Purcell, P. Vincent, C. Journet and V. Thien Binh, “Stable heating of individual multiwall carbon nanotubes to 2000 K induced by the field-emission current”, Phys. Rev. Lett., vol. 88, no. 10, pp. 105502, 2002.
    [40]. S. C. Kung, K. C. Hwang, I. Nan Lin, “Oxygen and ozone oxidation-enhanced field emission of carbon nanotubes”, Appl. Phys. Letters, vol. 80, no. 25, pp. 4819-4821, 2002.
    [41]. W. I. Milne, K. B. K. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J. P. Schnell, V. Semet, V. T. Binh and O. Groening, “Carbon nanotubes as field emission sources”, J. Mater. Chem., vol. 14, pp.933-943, 2004.
    [42]. L. Delzeit, I. McAninch, B.A. Cruden, D. Hash, B. Chen, J. Han, and M. Meyyappan, “Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor”, J. Appl. Phys., vol. 91, no. 9, pp. 6027-6033, 2002.
    [43]. E. J. Beckman, “Green chemical processing using CO2”, Ind. Eng. Chem. Res., vol. 42, no. 8, pp. 1598-1602, 2003.
    [44]. G. L. Weibel, C. K. Ober, “An overview of supercritical CO2 applications in microelectronics processing”, Microelectron. Eng., vol. 65, no. 1-2, pp. 145-152, 2003.
    [45]. H. Namatsu, “Supercritical drying for water-rinsed resist systems”, J. Vac. Sci. Technol. B., vol. 18, no. 6, pp. 3308-3312, 2000.
    [46]. D. J. Mount, L. B. Rothman, R. J. Robey, M. K. Ali, “The technology behind cleaning with supercritical fluids”, Solid State Tech., vol. 7, pp. 103-106, 2002.
    [47]. J. W. King, L. L. Williams, “Utilization of critical fluids in processing semiconductors and their related materials”, Current Opinion in Solid State and Materials Sci., vol. 7, no. 4-5, pp. 413-424, 2003.
    [48]. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display”, Appl. Phys. Lett., vol. 75, no. 20, pp. 3129-3131, 1999.
    [49]. J. L. Kwo, M. Yokoyama, W. C. Wang, F. Y. Chuang, I. N. Lin, “Characteristics of flat panel display using carbon nanotubes as electron emitters”, Diamond Relat. Mater., vol. 9, no. 3-6, p.1270-1274, 2000.
    [50]. Y. Cheng and O. Zhou, “Electron field emission from carbon nanotubes”, Comptes Rendus Physique, vol. 4, no. 9, pp. 1021-1033, 2003.
    [51]. E. Kondoh, M. R. Baklanov, H. Bender, K. Maex, “Structural change in porous silica thin film after plasma treatment”, Electrochem. and Solid-State Lett., vol. 1, no. 5, pp. 224-226, 1998.
    [52]. M. Z. Yates, D. L. Apodaca, M. L. Campbell, E. R. Birnbaum, T. M. McCleskey, “Micelle formation and surface interactions in supercritical CO2. Fundamental studies for the extraction of actinides from contaminated surfaces”, Chem. Commun. (Cambridge), 2001.
    [53]. Kim, S. and Johnston, K. P., “Supercritical fluids”, T. G. Squires and M. E. Paulaitis, Eds., ACS Symposium Series, vol. 329, p. 42-55, 1987.
    [54]. Lee, M. L. and Markides, K. E., Eds., “Analytical supercritical fluid chromatography and extraction”, Chromatography Conferences, Inc., Provo, UT, 1990.
    [55]. C. H. Lee, S. H. Hur, Y. C. Shin, J. H. Choi, D. G. Park, and K. Kim, “Charge-trapping device structure of SiO2/SiN/high-k dielectric Al2O3 for high-density flash memory”, Appl. Phys. Lett., vol. 86, no. 15, pp. 152908, 2005.
    [56]. K. Cherkaoui, A. Negara, S. McDonnell, G. Hughes, M. Modreanu, and P. K. Hurley, “Electrical properties of HfO2 films formed by ion assisted deposition”, Intern. Conf. on Microelectronics, pp. 351-354, 2006.
    [57]. Q. Fang, J. Y. Zhang, Z. M. Wang ,J. X. Wu, B. J. O’Sullivan, P. K. Hurley, T. L. Leedham, H. Davies ,M. A. Audier ,C. Jimenez ,J. P. Senateur , and I. W. Boyd, “Characterisation of HfO2 deposited by photo-induced chemical vapour deposition”, Thin Solid Films, vol. 427, no. 1-2, pp. 391-396, 2003.
    [58]. M. Liu, Q. Fang, G. He, L. Q. Zhu, and L. D. Zhang, “Characteristics of HfOxNy thin films by rf reactive sputtering at different deposition temperatures”, J. Appl. Phys., vol. 101, no. 3, pp. 034107, 2007.
    [59]. S. Jakschik, U. Schroeder, T. Hecht, M. Gutsche, H. Seidl, and J. W. Bartha, “Crystallization behavior of thin ALD-Al2O3 films”, Thin Solid Films, vol. 425, no. 1-2, pp. 216-220, 2003.
    [60]. B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi and J. C. Lee, “Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application”, IEDM Tech. Dig. Proc., pp. 133-136, 1999.
    [61]. S. C. Chen, J. C. Lou, C. H. Chien, P. T. Liu, and T. C. Chang, “An interfacial investigation of high-dielectric constant material hafnium oxide on Si substrate”, Thin Solid Films, vol. 488, no. 1-2, pp. 167-172, 2005.
    [62]. T. Sameshima and M. Satoh, “Improvement of SiO2 properties by heating treatment in high pressure H2O vapor”, Jap. J. Appl. Phys., vol. 36, pp. L687-L689, 1997.
    [63]. T. Sameshima, K. sakamoto, Y. Tsunoda and T. Saitoh, “Improvement of SiO2 and silicon surface passivation by heating treatment with high-pressure H2O vapor”, Jap. J. Appl. Phys., vol. 37, pp. L1452-L1454, 1998.
    [64]. M. Kunii, “Evaluation of Electrical Characteristics and Trap-state density in bottom-gate polycrystalline thin film transistors processed with high-pressure water vapor annealing”, Jap. J. Appl. Phys., vol. 45, pp. 660-665, 2006.
    [65]. M. A. Quevedo-Lopez, J. J. Chambers, M. R. Visokay, A. Shanware, and L. Colombo, “Thermal stability of hafnium–silicate and plasma-nitrided hafnium silicate films studied by Fourier transform infrared spectroscopy”, Appl. Phys. Lett., vol. 87, no. 1, pp. 012902, 2005.
    [66]. J. H. Hong, T. H. Moon, and J. M. Myoung, “Microstructure and characteristics of the HfO2 dielectric layers grown by metalorganic molecular beam epitaxy”, Microelectronic Engineering, vol. 75, no. 3, pp. 263-268, 2004.
    [67]. Q. Fang, J. Y. Zhang, Z. Wang, M. Modreanu, B. J. O’Sullivan, P. K. Hurley, T. L. Leedham, D. Hywel, M. A. Audier, C. Jimenez, J. P. Senateur, and I. WBoyd, “Interface of ultrathin HfO2 films deposited by UV-photo-CVD”, Thin Solid Films, vol. 453-454 , pp. 203-207, 2004.
    [68]. W. J. Zhu, T. P. Ma, T. Tamagawa, J. Kim, and Y. Di, “Current transport in metal/hafnium oxide/silicon structure”, IEEE Electron Devices Lett., vol. 23, no. 2, pp. 97-99, 2002.
    [69]. T. Yamaguchi, H. Satake, and N. Fukushima, “Band diagram and carrier conduction mechanisms in ZrO/sub 2/ MIS structures”, IEEE Trans. Electron Devices, vol. 51, no. 5, pp. 774-779, 2004.
    [70]. M. Houssa, M. Tuominen, M. Naili, V. Afanas'ev, A. Stesmans, S. Haukka, M. M. Heyns, “Trap-assisted tunneling in high permittivity gate dielectric stacks”, J. Appl. Phys., vol. 87, no. 12, pp. 8615-8620, 2000.
    [71]. S. Jeon, H. Yang, D. G. Park, and H. Hwang, “Electrical and structural properties of nanolaminate (Al2O3/ZrO2/Al2O3) for metal oxide semiconductor gate dielectric applications”, Jpn. J. Appl. Phys., vol. 41, no. 4B, pp. 2390-2393, 2002.
    [72]. J. R. Yeargan, and H. L. Taylor, “The Poole-Frenkel effect with compensation present”, J. Appl. Phys., vol. 39, no. 12, pp. 5600-5604, 1968.
    [73]. S. W. Huang and J. G. Hwu, “Electrical characterization and process control of cost-effective high-k aluminum oxide gate dielectrics prepared by anodization followed by furnace annealing”, IEEE Trans. Electron Devices, vol. 50, no. 7, pp. 1658-1664, 2003.
    [74]. A. Koukab, A. Bath and E. Losson, “An improved high frequency C-V method for interface state analysis on MIS structures”, Solid-State Electronics, vol. 41, no. 4, pp. 635-641, 1997.
    [75]. W. Y. Loh, B. J. Cho, M. S. Joo, M. F. Li, D. S. Chan, S. Mathew, and D. L. Kwong, “Analysis of charge trapping and breakdown mechanism in high-k dielectrics with metal gate electrode using carrier separation”, IEDM Tech. Dig. Proc., pp. 927-930, 2003.
    [76]. T. Fukuda and H. Yanazawa, “A novel method of removing impurities from multilevel interconnect materials”, Jap. J. Appl. Phys., vol. 43, pp. 936-939, 2004.
    [77]. S. W. Huang and J. G. Hwu, “Electrical characterization and process control of cost-effective high-k aluminum oxide gate dielectrics prepared by anodization followed by furnace annealing”, IEEE Trans. Electron Devices, vol. 50, no. 7, pp. 1658-1664, 2003.
    [78]. W. R. Hiatt and T. W. Hickmott, “Bistable switching in switching in niobium oxide diodes”, Appl. Phys. Lett., vol. 6, no. 6, pp. 106-108, 1965.
    [79]. C. Yoshida, K. Tsunoda, H. Noshiro, and Y. Sugiyama, “High speed resistive switching in Pt/TiO2 /TiN film for nonvolatile memory application”, Appl. Phys. Lett., vol. 91, no. 22, pp.223510, 2007.
    [80]. W. Xiang, R. Dong, D. Lee, S. Oh, D. Seong, and H. Hwang, “Heteroepitaxial growth of Nb-doped SrTiO3 films on Si substrates by pulsed laser deposition for resistance memory applications”, Appl. Phys. Lett., vol. 90, no. 5, pp. 052110, 2007.
    [81]. C. W. Wang, R. T. Chang, W. K. Lin, R. D. Lin, M. T. Liang, J. F. Yang, and J. B. Wang, “Supercritical CO2 fluid for chip resistor cleaning”, J. Electrochem. Soc., vol. 146, no. 9, pp. 3485-3488, 1999.
    [82]. B. Xie and A. J. Muscat, “Condensation of silanol groups in porous methylsilsesquioxane films using supercritical CO2 and alcohol cosolvents”, IEEE Trans. Semiconductor Manufacturing, vol. 17, no. 4, pp. 544-553, 2004.
    [83]. M. J. Rozenberg, I. H. Inoue, and M. J. Sánchez, “Nonvolatile Memory with Multilevel Switching: A Basic Model”, Phys. Rev. Lett., vol. 92, no. 17, pp. 178302, 2004.
    [84]. M. J. Sánchez, M. J. Rozenberg, and I. H. Inoue, “A mechanism for unipolar resistance switching in oxide nonvolatile memory devices”, Appl. Phys. Lett., vol. 91, no. 25, pp. 252101, 2007.
    [85]. D. M. Wolfe and G. Lucovsky, “ Formation of nano-crystalline Si by thermal annealing of SiOx, SiCx and SiOyCx amorphous alloys: model systems for advanced device processing”, J. Non-Crystalline Solids, vol. 266-269, pp. 1009-1014, 2000.
    [86]. N. Sano, M. Sekiya, M. Hara, A. Kohno, and T. Sameshima, “Improvement of SiO2/Si interface by low-temperature annealing in wet atmosphere”, Appl. Phys. Lett., vol. 66, no. 16, pp. 2107-2109, 1995.
    [87]. H. Watakabe, T. Sameshima, T. Strutz, T. Oitome and A. Kohno, “Defect reduction treatment for plasma–tetraethylorthosilicate–SiO2 by high-pressure H2O vapor heat treatment”, Jap. J. Appl. Phys., vol. 44, pp. 8367-8370, 2005.
    [88]. A. Koukab, A. Bath and E. Losson, “C-V characteristics of SiO2 thin films prepared by sol-gel method”, Intern. Symp. Electrets, pp. 706-709, 1996.
    [89]. T. Tanaka, H. Asuma, K. Ogawa, Y Shinagawa, K. Ono, and N. Konishi, “An LCD addressed by a-Si:H TFTs with peripheral poly-Si TFT circuits”, IEDM Tech. Dig. Proc., pp. 389-392, 1993.
    [90]. Y. He, R. Hattori, and J. Kanicki, “Current-Source a–Si:H Thin-Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays”, IEEE Electron Device Lett., vol. 21, no. 12, pp. 590-592, 2000.
    [91]. C. S. Yang, L. L. Smith, C. B. Arthur, and G. N. Parsons, “Stability of low-temperature amorphous silicon thin film transistors formed on glass and transparent plastic substrates”, J. Vac. Sci. Technol. B, vol. 18, no. 2, pp. 683-689, 2000.
    [92]. H. N. Chern, C. L. Lee, and T. F. Lei, “The Effects of H2-O2-plasma treatment on the characteristics of polysilicon thin-film transistors”, IEEE Trans. Electron Devices, vol. 40, no. 12, pp. 2301-2306, 1993.
    [93]. H. C. Cheng, F. S. Wang, and C. Y. Huang, “Effects of NH3 plasma passivation on n-channel polycrystalline silicon thin-Film transistors”, IEEE Trans. Electron Devices, vol. 44, no. 1, pp. 64-68, 1997.
    [94]. T. Sameshima, M. Satoh, K. Sakamoto, A. Hisamatsu, K. Ozaki, and K. Saitoh, “Heat treatment of amorphous and polycrystalline silicon thin films with H2O vapor”, Jpn. J. Appl. Phys., vol. 37, pp. L112-L114, 1998.
    [95]. K. Kitahara, K. Ohnishi, Y. Katoh, R. Yamazaki, and T. Kurosawa, “Analysis of Defects in Polycrystalline Silicon Thin Films Using Raman Scattering Spectroscopy”, Jpn. J. Appl. Phys., vol. 42, pp. 6742-6747, 2003.
    [96]. S. Ogawa, T. Nasuno, M. Egami, and A. Nakashima, “Formation of mechanically strong low-k film using supercritical fluid dry technology”, IEEE International Interconnect Technology Conf. Proc., pp. 220-222, 2002.
    [97]. R. E. I. Schropp, J. Snijder, and J. F. Verwey, “A self-consistent analysis of temperature-dependent field-effect measurements in hydrogenated amorphous silicon thin-film transistors”, J. Appl. Phys., vol. 60, no. 2, pp. 643-649, 1986.

    [98]. R. Schumacher, P. Thomas, K. Weber, W. Fuhs, F. Djamdji, P. G. Le Comber, and R. E. I. Schropp, “Temperature-dependent effects in field-effect measurements on hydrogenated amorphous silicon thin-film transistors”, Phil. Mag. B, vol. 58, no. 4, pp. 389-410, 1998.
    [99]. G. Fortunato, D. B. Meakin, P. Migliorato, and P. G. L. Comber, “Field-effect analysis for the determination of gap-state density and Fermi-level temperature dependence in polycrystalline silicon”, Phil. Mag. B, vol. 57, no. 5, p. 573-586, 1998.
    [100]. T. Globus, H. C. slade, M. S. Shur, and M. Hack, “Density of deep bandgap states in amorphous silicon from the temperature dependence of thin film transistor current”, Mat. Res. Soc. Symp. Proc., vol. 336, pp. 823-828, 1994.
    [101]. P. Servati, and A. Nathan, “Modeling of the static and dynamic behavior of hydrogenated amorphous silicon thin-film transistors”, J. Vac. Sci. Technol. A, vol. 20, no. 3, pp. 1038-1042, 2002.
    [102]. M. Powell, “The Physics of Amorphous-Silicon Thin-Film Transistors”, IEEE Trans. Electron Devices, vol. 36, no. 12, pp. 2753-2763, 1989.
    [103]. P. Servati, and A. Nathan, “Modeling of the Reverse Characteristics of a-Si:H TFTs”, IEEE Trans. Electron Devices, vol. 49, no. 5, pp. 812-819, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE