簡易檢索 / 詳目顯示

研究生: 貝 德
Owolabi, Bayode Emmanuel
論文名稱: 湍流管道流動的特徵:實驗和直接數值模擬
Characterisation of turbulent duct flows: experiments and direct numerical simulations
指導教授: 林昭安
Lin, Chao-An
口試委員: Pinelli, Alfredo
Pinelli, Alfredo
Cadot, Olivier
Cadot, Olivier
Akhtar, Riaz
Akhtar, Riaz
陳慶耀
Chen, Ching-Yao
劉通敏
Liou, Tong-Miin
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 204
中文關鍵詞: 湍流管流
外文關鍵詞: Turbulent flows, Duct flows
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 管道湍流常見於許多工程應用中,深入研究管道湍流對於預測傳熱,混合,以及界面摩擦阻力至關重要。以前的研究主要集中在較大雷諾數下的純壓力驅動(Poiseuille)的流動,而對於低雷諾數下的流動特性尚不清楚。少量的有關Poiseuille流動DNS數值模擬結果表明,在非圓形管道中,當雷諾數接近於流體轉化為湍流的臨界值時,有一個有趣的現象。例如,在方形橫截面管道中,觀察到流場在以不同的二次流動模式為特徵的兩個狀態之間切換,這種現像很可能對傳熱和傳質具有重大的影響。然而這個發現卻從未被實驗驗證過。
    管道湍流另一重要但尚未研究清楚的領域是減阻(DR)。例如,已經發現即使較小濃度的長鏈柔性聚合物,也可以改變管道中的湍流,導致界面摩擦大幅度減小。然而,至今仍沒有研究將減阻程度和可測量的流體性質聯繫起來。
    本研究通過實驗和模擬兩種方法,在許多不同的雷諾數範圍內,對牛頓流體和非牛頓流體在管道中的湍流流動進行了研究。管道的形狀包括方形,矩形和圓形。首先確定了純壓力驅動流動在方形管道內開始向湍流轉化的最小雷諾數,並且確定了Coriolis 效應對低埃克曼數流動的重要性。隨後通過實驗獲得在較低雷諾數情況下的平均流體性質和湍流數據。 Uhlmann 等人 (2007)用DNS方法預測了方形管道中湍流的流體場在兩種狀態間相互交換的過程。在該研究中,通過展示在距離管壁一定距離內的平行於中軸的速度的概率密度函數具有雙峰特點,從而驗證了Uhlmann 等人 (2007)的DNS結果。平行於中軸速度和垂直管壁速度的聯合概率密度函數也具有兩個峰,這兩個峰分別對應流體的兩種狀態。通過將泰勒的冷凍湍流假說應用在數據中,我們發現在沿著管道長度方向上也存在空間轉換。
    本研究通過對零淨通量的管壁驅動流體((Couette)在方形管道中進行DNS模擬,結果顯示這個過程也存在兩種狀態。這說明這種現像不只存在於Poiseuille流動當中。研究發現,二次級流動與近管壁處流體的噴射和掃向壁面滑行運動有緊密聯繫。而且垂直管壁對流體流動存在穩定化作用,因此其對應的湍流雷諾數比在平面Couette 流動中的要高很多。
    為了對方形管道中的Couette-Poiseuille流動進行實驗研究,本研究設計並搭建了一個管壁可以移動的新的測試設備。通過在層流區域使用激光多普勒測速儀(LDV)測量流速分佈發現,採用這個設備可以對已經發展成熟的分析結果進行精準重複。本研究給出了將來採用這個新的測試設備對湍流進行研究的建議。
    最後,本研究重新探索了聚合物減阻問題。首次得到了一個可以直接從聚合物溶液的單個可測量的材料特性定量預測減阻程度的相關性,該材料特性與幾何形狀,濃度及其他實驗變量無關。


    Turbulent duct flows are encountered in a wide range of engineering applications; a fundamental physical understanding of such flows is thus very important for making predictions about heat transfer, mixing and skin friction drag. Previous studies have focused mainly on the purely-pressure driven (Poiseuille) case at relatively large Reynolds numbers (Re), hence the flow characteristics at low Re are not well understood. Limited Poiseuille flow direct numerical simulation (DNS) data show that in non-circular ducts, there exists an interesting phenomenon at Re close to transition to turbulence. Specifically in ducts of square cross-section, the flow field is observed to switch between two states characterised by different secondary flow patterns, thus potentially having serious implications for heat and mass transport. This finding has never been verified experimentally.
    Another important area in the study of turbulent duct flows, which is yet to be fully understood, is the drag reduction (DR) obtained by seeding with long-chain flexible polymers having high molecular weights. These are known to modify the turbulence field in duct flows when added even at minute concentrations, causing a massive decrease in skin friction; yet it has never been possible to relate the degree of DR to a measurable fluid property.
    In this study, turbulent duct flows of Newtonian and non-Newtonian fluids over a wide range of Reynolds numbers are investigated both experimentally and numerically. The geometries considered include a square duct, rectangular channel and circular pipe. In purely pressure-driven flow in a square duct, the onset criteria for transition to turbulence is first examined. In so doing, the potential importance of Coriolis effects on this process for low-Ekman-number flows is highlighted. Experimental data on the mean flow properties and turbulence statistics at relatively low Reynolds numbers are then obtained. The alternation of the flow field between two states in the "marginal turbulence" regime in a square duct, originally predicted by the DNS of Uhlmann et al. (2007), is confirmed by bimodal probability density functions of streamwise velocity at certain distances from the wall as well as joint probability density functions of streamwise and wall-normal velocities which feature two peaks highlighting the two states. By applying Taylor's hypothesis of frozen turbulence to the data, it is shown that there is also a spatial switching along the length of the duct.
    Similarly, direct numerical simulations of zero-net-flux wall-driven (Couette) flow in a square duct reveal an alternation between two states, thus indicating that the phenomenon is not unique to Poiseuille flows. The secondary motions are observed to be closely related to the near-wall ejection and sweep events. Furthermore, the side walls are found to have a stabilising effect on the flow, the critical Reynolds number for transition being much higher than that in plane Couette flow.
    For an experimental investigation of square duct Couette-Poiseuille flows, a new test section with one moving wall has been designed and constructed. Preliminary Laser Doppler Velocity (LDV) measurements of the velocity profiles in the laminar regime show that the fully developed analytical solution can be accurately reproduced in the facility. Suggestions for future turbulent flow studies in the new test-section have been given.
    Finally, the polymer DR problem has been revisited, and for the first time, a correlation which allows for quantitative predictions of DR from the knowledge of a single measurable material property of a polymer solution, independent of the geometry, concentration, and other experimental variables is obtained.

    Abstract (ii) Publications (iv) Acknowledgements (vi) Contents (viii) List of figures (xii) List of tables (xvii) Nomenclature (xviii) 1 Introduction ..........................................................................................................................1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .........................................................1 1.2 Motivation for current study . . . . . . . . . . . . . . . . . . .................................................4 1.3 Aim and objectives of research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . . . . . .6 2 Literature review and background theory . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2.1 The mean flow profile and law of the wall in turbulent duct flows . . . . .. .9 2.2 Pressure-driven flow in non-circular ducts . . . . . . .. . . . . . . . . . . . . . . . . . . . 11 2.2.1 Turbulent flow experiments in a square duct . . . . . . . . . . . . . . . .. . . . . . . . 12 2.2.2 Numerical simulation of fully turbulent square duct flows . . . . . . . . . . . 17 2.2.3 Exact coherent states, transition to turbulence and marginally turbulent flows . . . . . . . . . . . ..... . . . . . . . . . .. . . . . . . . . .. . . . .. . . . . . . . . . . . . . . . . . 23 2.3 Wall-driven flows in planar ducts . . . . . . . . . . . . . . ...................................... . . . 26 2.4 Duct flows with polymer additives . . . . . . . . . . . . . . . . . .................................... 34 2.4.1 Rheology of dilute and semi-dilute polymer solutions . . . ....................... 35 2.4.2 Findings on polymer drag reduction from experiments and numerical simulations . . . . . . . . . . . . . . . . . . . ............................................................ . 38 2.4.3 Theories and prediction . . . . . . . . . . . . . . . . . ................................................. .. 42 3 Experimental methods. . . . . .......................... . . . . ................................................... 51 3.1 Experimental arrangements and instrumentation . . . . . . . . . . . . . ............. 51 3.2 Laser Doppler velocimetry measurements . . . . . . . . . . . . . . . . . . . ............... 56 3.3 Stereoscopic particle image velocimetry measurements . . . . ............... . . 59 3.4 Pressure drop measurements and determination of wall shear stress . 62 3.5 Rheological measurements . . . . . . . . . . . . . . . . . . . . . ...................................... .. 63 3.5.1 Extensional rheology measurements . . . . . . . . . . . . ................................... . 66 3.6 Measurement uncertainties . . . . . . . . . . . . . . . . . . . . . ..................................... . 66 4 Numerical methods ...................................................................................................... 74 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................................... 74 4.2 Mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . .................................................... 75 4.3 Spatial discretisation . . . . . . . . . . . . . . . . . . . . . .................................................... 77 4.4 Temporal discretisation . . . . . . . . . . . . . . . . . . ..................................................... 78 4.4.1 Poisson equation for pressure . . . . . . . . . . . . ................................................. 79 4.5 Boundary conditions . . . . . . . . . . . . . . . . . . . . . ..................................................... 80 4.6 DNS code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................................................80 5 Turbulent pressure-driven flow in a square duct at low Reynolds numbers. . . . . . . . . . . . . . . . . . . . . . . . . . ................................................... . . . . . . . . . 84 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . .................................................. . . . . . . 84 5.2 Transition to turbulence . . . . . . . . . . . . . . ................................................. . . . . .. 85 5.2.1 Numerical simulation of square duct laminar flow under the influence of Coriolis force . . . . . . . . . . . . . . . . . . ......................................................... 88 5.3 Characteristics of low Reynolds number turbulent flows . . . . . . . . . ..... .88 5.3.1 Mean streamwise velocity measurements . . . . . . . . . .. . . . . . . . . . . .. .... 89 5.3.2 Instantaneous velocity measurements . . . . . . . . . . . . . . . . . .,. . . . .. . .. ... 89 5.3.3 Turbulence intensity and Reynolds stress measurements . . . . . . . . ... 89 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... 93 6 Turbulent wall-driven flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . ... . .104 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................... ... . . .. . ..104 6.2 Critical conditions for self-sustained turbulence . . . . . . . . . . . . . . .. . . ..106 6.3 Turbulent flows at low Reynolds numbers . . . . . . . . . . . . . . . . . . . .. . . . 109 6.3.1 Secondary flow pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 6.3.2 Flow statistics and turbulence structure . . . . . . . . . . . . . . . . . . . . . . . . .117 7 Turbulent duct flows with polymer additives . . . . . . . . . . . . . . . . . . . . . . . .133 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .133 7.2 Working fluid preparation and rheological characterisation . . . . .. . . 134 7.3 Mean streamwise velocity measurements . . . . . . . . . . . . . ........................ 136 7.4 Instantaneous velocity fluctuations . . . . . . . . . .............................. . . . . . . . .141 7.5 Universal relationship between drag reduction and fluid elasticity.....143 7.6 Summary . . . . . . . . . . . . . . . . . . .................................................... . . . . . . . . . . . . .147 8 Conclusions and recommendations....................................................................153 8.1 Introduction . . . . . . . . . . . . . ............................................... . . . . . . . . . . . . . . . .. 153 8.2 Summary of fi ndings . . . . . . . . . . . . . . . . . . . . . . . . .......................................... 153 8.2.1 Transition to turbulence in duct flows . . . . . . . . . . . . ...............................153 8.2.2 Turbulent duct flows at low Reynolds numbers . . . . . .......................... 154 8.2.3 Turbulent duct flows with polymer additives . . . . . . . . ..........................155 8.3 Suggestions for future work . . . . . . . . . . . . . . . .................................... . . . . . 156 8.3.1 Transition to turbulence and marginally turbulent flows ................ . 156 8.3.2 Turbulent Couette-Poiseuille flows . . . ................................. . . . . . . . . . . 157 8.3.3 Polymer flows . . . . . . . . . . . . .................................................. . . . . . . . . . . . . 158 References........................................................................................................................177 A Laminar Couette-Poiseuille flows in a square duct .....................................178 A.1 Introduction . . . . ............................................... . . . . . . . . . . . . . . . . . . . . . . . . . 178 A.2 Couette flow test section . . . . . . . . . . . . . . . .................................... . . . . . . . 178 A.3 Development length in duct flows . . . . . . . . . . . . ............................ . . . . . 181 A.4 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . ......................................182 A.4.1 Mesh independence studies . . . . . . . . . . . . . . . . . .................................... 185 A.4.2 Development length computations . . . . . . . . . .............................. . . . . 190 A.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . .............................................. . . 192 A.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................. . 197

    Abe, H., Kawamura, H., and Matsuo, Y. (2001). Direct numerical simulation of
    a fully developed turbulent channel flow with respect to the Reynolds number
    dependence. J. Fluids Eng., 123(2):382-393.

    Adrian, R. J. and Westerweel, J. (2011). Particle image velocimetry. Cambridge
    University Press, New York.

    Albrecht, H. E., Damaschke, N., Borys, M., and Tropea, C. (2013). Laser Doppler
    and phase Doppler measurement techniques. Springer Science & Business Media,New York.

    Avsarkisov, V., Hoyas, S., Oberlack, M., and Garca-Galache, J. P. (2014). Turbulent plane Couette flow at moderately high Reynolds number. J. Fluid Mech., 751:R1.

    Aydin, E. M. and Leutheusser, H. J. (1991). Plane Couette flow between smooth and rough walls. Exp. Fluids, 11(5):302-312.

    Aydin, M. and Leutheusser, H. J. (1979). Novel experimental facility for the
    study of plane Couette flow. Rev. Sci. Instrum., 50(11):1362{1366.

    Barnes, H. A., Hutton, J. F., and Walters, K. (1989). An introduction to rheology.
    Elsevier, Oxford.

    Bazilevsky, A., Entov, V., and Rozhkov, A. (1990). Liquid lament microrheometer
    and some of its applications. In Third European Rheology Conference and Golden Jubilee Meeting of the British Society of Rheology, pages 41{43.
    Springer.

    Berman, N. S. (1978). Drag reduction by polymers. Annu. Rev. Fluid Mech.,
    10(1):47-64.

    Biau, D. and Bottaro, A. (2009). An optimal path to transition in a duct. Phil.
    Trans. R. Soc. Lond. A, 367(1888):529-544.

    Bradshaw, P. (1987). Turbulent secondary flows. Annu. Rev. Fluid Mech., 19(1):53-74.

    Bradshaw, P. and Huang, G. P. (1995). The law of the wall in turbulent flow. Proc. R. Soc. Lond. A, 451(1941):165-188.

    Brundrett, E. and Baines, W. D. (1964). The production and diffusion of vorticity
    in duct flow. J. Fluid Mech., 19(03):375-394.

    Busse, F. H. (1970). Bounds for turbulent shear flow. J. Fluid Mech., 41(1):219-
    240.

    Carreau, P. J. (1972). Rheological equations from molecular network theories.
    Trans. Soc. Rheol., 16(1):99-127.

    Clasen, C., Plog, J., Kulicke, W.-M., Owens, M., Macosko, C., Scriven, L., Verani,
    M., and McKinley, G. H. (2006). How dilute are dilute solutions in extensional flows? J. Rheol., 50(6):849-881.

    Coleman, G. N. and Sandberg, R. D. (2010). A primer on direct numerical
    simulation of turbulence-methods, procedures and guidelines.

    Darby, R. and Chang, H. F. D. (1984). Generalized correlation for friction loss
    in drag reducing polymer solutions. AIChE J., 30(2):274-280.

    Dauchot, O. and Daviaud, F. (1994). Finite-amplitude perturbation in plane
    Couette flow. EPL (Europhysics Letters), 28(4):225.

    Davey, A. (1973). On the stability of plane Couette flow to infi nitesimal disturbances. J. Fluid Mech., 57(2):369-380.

    Daviaud, F., Hegseth, J., and Berge, P. (1992). Subcritical transition to turbulence in plane Couette flow. Phys. Rev. Lett., 69:2511-2514.

    Davoodi, M., Lerouge, S., Norouzi, M., and Poole, R. J. (2018). Secondary
    flows due to finite aspect ratio in inertialess viscoelastic Taylor-Couette flow. J. Fluid Mech., 857: 823-850.

    De Angelis, E., Casciola, C. M., Benzi, R., and Piva, R. (2005). Homogeneous
    isotropic turbulence in dilute polymers. J. Fluid Mech., 531:1-10.

    Dean, R. B. (1978). Reynolds number dependence of skin friction and other
    bulk flow variables in two-dimensional rectangular duct flow. J. Fluids Engng.,
    100(2):215-223.

    Demuren, A. O. and Rodi, W. (1984). Calculation of turbulence-driven secondary motion in non-circular ducts. J. Fluid Mech., 140:189-222.

    Den Toonder, J. M. J., Draad, A. A., Kuiken, G. D. C., and Nieuwstadt, F.
    T. M. (1995). Degradation effects of dilute polymer solutions on turbulent
    drag reduction in pipe flows. Appl. Sci. Res., 55(1):63-82.

    Dennis, D. J. C. and Nickels, T. B. (2008). On the limitations of Taylor's hypothesis in constructing long structures in a turbulent boundary layer. J. Fluid Mech., 614:197-206.

    Dennis, D. J. C., Seraudie, C., and Poole, R. J. (2014). Controlling vortex
    breakdown in swirling pipe flows: experiments and simulations. Phys. Fluids, 26(5):053602.

    Dennis, D. J. C. and Sogaro, F. M. (2014). Distinct organizational states of fully
    developed turbulent pipe flow. Phys. Rev. Lett., 113(23):234501.

    Dontula, P., Pasquali, M., Scriven, L. E., and Macosko, C. C. W. (1997). Can
    extensional viscosity be measured with opposed-nozzle devices? Rheol. Acta,
    36(4):429-448.

    Draad, A. and Nieuwstadt, F. (1998). The earth's rotation and laminar pipe
    flow. J. Fluid Mech., 361:297-308.

    Dubief, Y., Terrapon, V. E., White, C. M., Shaqfeh, E. S. G., Moin, P., and Lele,
    S. K. (2005). New answers on the interaction between polymers and vortices
    in turbulent flows. Flow Turbul. Combust., 74(4):311-329.

    Dubief, Y., White, C. M., Terrapon, V. E., Shaqfeh, E. S. G., Moin, P., and
    Lele, S. K. (2004). On the coherent drag-reducing and turbulence-enhancing
    behaviour of polymers in wall flows. J. Fluid Mech., 514:271-280.

    Durst, F., Melling, A., and Whitelaw, J. H. (1981). Principles and practice of
    laser Doppler anemometry. Academic Press, London.

    Durst, F., Ray, S., Unsal, B., and Bayoumi, O. (2005). The development lengths
    of laminar pipe and channel flows. ASME J. Fluids Eng., 127(6):1154-1160.

    El Khoury, G. K., Schlatter, P., Noorani, A., Fischer, P. F., Brethouwer, G., and
    Johansson, A. V. (2013). Direct numerical simulation of turbulent pipe
    flow at moderately high Reynolds numbers. Flow Turbul. Combust., 91(3):475{495.

    El Telbany, M. M. M. and Reynolds, A. J. (1982). The structure of turbulent
    plane Couette flow. J. Fluids Engrg., 104(3):367-372.

    Elbing, B. R., Perlin, M., Dowling, D. R., and Ceccio, S. L. (2013). Modi cation
    of the mean near-wall velocity profi le of a high-Reynolds number turbulent
    boundary layer with the injection of drag-reducing polymer solutions. Phys.
    Fluids, 25(8):085103.

    Erhard, P., Etling, D., Muller, U., Riedel, U., Sreenivasan, K. R., and Warnatz,
    J. (2010). Prandtl-essentials of fluid mechanics, volume 158. Springer Science
    & Business Media, London.

    Escudier, M., Poole, R., Presti, F., Dales, C., Nouar, C., Desaubry, C., Graham,
    L., and Pullum, L. (2005). Observations of asymmetrical flow behaviour in
    transitional pipe flow of yield-stress and other shear-thinning liquids. J. Non-
    Newt. Fluid Mech., 127(2):143-155.

    Escudier, M. and Smith, S. (2001). Fully developed turbulent flow of non-
    Newtonian liquids through a square duct. Proc. R. Soc. A, 457(2008):911-936.

    Escudier, M. P., Nickson, A. K., and Poole, R. J. (2009). Turbulent flow of
    viscoelastic shear-thinning liquids through a rectangular duct: Quanti fication
    of turbulence anisotropy. J. Non-Newtonian Fluid Mech., 160(1):2-10.

    Escudier, M. P., OLeary, J., and Poole, R. J. (2007). Flow produced in a conical
    container by a rotating endwall. Int. J. Heat Fluid Flow, 28(6):1418-1428.

    Escudier, M. P., Presti, F., and Smith, S. (1999). Drag reduction in the turbulent
    pipe flow of polymers. J. Non-Newtonian Fluid Mech., 81(3):197-213.

    Faisst, H. and Eckhardt, B. (2003). Travelling waves in pipe flow. Phys. Rev. Lett., 91(22):224502.

    Ferziger, J. H. and Peric, M. (2012). Computational methods for fluid dynamics.
    Springer Science & Business Media, London, 3rd edition.

    Gavrilakis, S. (1992). Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct. J. Fluid Mech., 244:101-129.

    Gessner, F. B. and Jones, J. B. (1965). On some aspects of fully-developed
    turbulent flow in rectangular channels. J. Fluid Mech., 23(4):689-713.

    Gnanga, H., Naji, H., and Mompean, G. (2009). Computation of a three dimensional turbulent flow in a square duct using a cubic eddy-viscosity model. Comptes Rendus Mecanique, 337(1):15-23.

    Graessley, W. W. (1980). Polymer chain dimensions and the dependence of
    viscoelastic properties on concentration, molecular weight and solvent power.
    Polymer, 21(3):258-262.

    Graham, M. D. (2014). Drag reduction and the dynamics of turbulence in simple and complex fluids. Phys. Fluids, 26(10):101301.

    Halliwell, N. A. and Lewkowicz, A. K. (1975). Investigation into the anomalous
    behavior of pitot tubes in dilute polymer solutions. Phys. Fluids, 18(12):1617-
    1625.

    Hamilton, J. M., Kim, J., and Waleffe, F. (1995). Regeneration mechanisms of
    near-wall turbulence structures. J. Fluid Mech., 287:317-348.

    Hartnett, J. P., Kwack, E. Y., and Rao, B. K. (1986). Hydrodynamic behaviour
    of non-Newtonian fluids in a square duct. J. Rheol., 30(4):S45-S59.

    Hoagland, L. C. (1960). Fully developed turbulent flow in straight rectangular ducts: secondary flow, its cause and effect on the primary flow. PhD thesis,
    Massachusetts Institute of Technology, Cambridge.

    Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H.,
    Eckhardt, B., Wedin, H., Kerswell, R. R., and Walefe, F. (2004). Experimental
    observation of nonlinear traveling waves in turbulent pipe flow. Science,
    305(5690):1594-1598.

    Housiadas, K. D. and Beris, A. N. (2003). Polymer-induced drag reduction: Effects of the variations in elasticity and inertia in turbulent viscoelastic channel flow. Phys. Fluids, 15(8):2369-2384.

    Housiadas, K. D. and Beris, A. N. (2004). Characteristic scales and drag reduction evaluation in turbulent channel flow of nonconstant viscosity viscoelastic fluids. Phys. Fluids, 16(5):1581-1586.

    Housiadas, K. D. and Beris, A. N. (2013). On the skin friction coeficient in
    viscoelastic wall-bounded flows. Int. J. Heat Fluid Flow, 42:49-67.

    Hsu, H. W. (2012). Investigation of turbulent Couette-Poiseuille and Couette flows inside a square duct. PhD thesis, National Tsing Hua University, Taiwan.

    Hsu, H. W., Hsu, J. B., Lo, W., and Lin, C. A. (2012). Large eddy simulations of
    turbulent Couette-Poiseuille and Couette flows inside a square duct. J. Fluid
    Mech., 702:89101.

    Hsu, H. W., Hwang, F. N., Wei, Z. H., Lai, S.-H., and Lin, C. A. (2011). A parallel
    multilevel preconditioned iterative pressure Poisson solver for the large-eddy
    simulation of turbulent flow inside a duct. Comput. Fluids, 45(1):138-146.

    Hultmark, M., Vallikivi, M., Bailey, S. C. C., and Smits, A. J. (2012). Turbulent
    pipe flow at extreme Reynolds numbers. Phys. Rev. Lett., 108(9):094501.

    Huser, A. and Biringen, S. (1993). Direct numerical simulation of turbulent flow
    in a square duct. J. Fluid Mech., 257:65-95.

    Hutchins, N. and Choi, K.-S. (2002). Accurate measurements of local skin friction coeficient using hot-wire anemometry. Prog. Aerosp. Sci., 38(4):421-446.

    James, D. F. and Yogachandran, N. (2006). Filament-breaking length a measure
    of elasticity in extension. Rheologica acta, 46(2):161{170.

    Jimenez, J. and Kawahara, G. (2012). Dynamics of Wall-Bounded Turbulence,
    page 221268. Cambridge University Press.

    Jimenez, J. and Moin, P. (1991). The minimal flow unit in near-wall turbulence.
    J. Fluid Mech., 225:213-240.

    Jimenez, J. and Pinelli, A. (1999). The autonomous cycle of near-wall turbulence. J. Fluid Mech., 389:335-359.

    John, D. and Anderson, J. R. (1995). Computational fluid dynamics: the basics
    with applications. Johnston, J. (1975). Internal flows. In Turbulence. Topics in Applied Physics, volume 12, pages 109-169. Springer.

    Jones, O. C. (1976). An improvement in the calculation of turbulent friction in
    rectangular ducts. Trans. ASME J: J. Fluids Engng, 98(2):173-180.

    Joung, Y., Choi, S., and Choi, J. (2007). Direct numerical simulation of turbulent flow in a square duct: analysis of secondary flows. J. Eng. Mech., 133(2):213-
    221.

    Kim, J. and Moin, P. (1985). Application of a fractional-step method to incompressible navier-stokes equations. J. Comput. Phys., 59(2):308{323.
    Kim, J., Moin, P., and Moser, R. (1987). Turbulence statistics in fully developed
    channel flow at low Reynolds number. J. Fluid Mech., 177:133-166.

    Kitoh, O., Nakabyashi, K., and Nishimura, F. (2005). Experimental study
    on mean velocity and turbulence characteristics of plane Couette
    flow: low-Reynolds-number effects and large longitudinal vortical structure. J. Fluid Mech., 539:199{227.

    Kitoh, O. and Umeki, M. (2008). Experimental study on large-scale streak
    structure in the core region of turbulent plane Couette flow. Phys. Fluids,
    20(2):025107.

    Klewicki, J., Fife, P., and Wei, T. (2009). On the logarithmic mean profi le.
    J. Fluid Mech., 638:73-93.

    Komminaho, J., Lundbladh, A., and Johansson, A. V. (1996). Very large structures in plane turbulent Couette flow. J. Fluid Mech., 320:259-285.

    Korson, L., Drost-Hansen, W., and Millero, F. J. (1969). Viscosity of water at
    various temperatures. J. Phys. Chem., 73(1):34-39.

    Krajewski, B. (1970). Determination of turbulent velocity field in a rectilinear
    duct with non-circular cross-section. Int. J. Heat Mass Transfer, 13(12):1819-
    1823.

    Lamb, C. (1932). Address to the British association for the advancement of
    science. Quoted in Computational fluid mechanics and heat transfer by JC
    Tannehill, DA Anderson, and RH Pletcher. 1984.

    Laufer, J. (1951). Investigation of turbulent flow in a two-dimensional channel.
    Technical Report 2123 N.A.C.A.

    Launder, B. E. and Ying, W. M. (1972). Secondary flows in ducts of square
    cross-section. J. Fluid Mech., 54(02):289-295.

    Launder, B. E. and Ying, W. M. (1973). Prediction of flow and heat transfer in
    ducts of square cross-section. Proc. Inst. Mech. Eng., 187(1):455-461.

    Leal, L. G. (1990). Dynamics of dilute polymer solutions. In Structure of Turbu-
    lence and Drag Reduction, pages 155-185. Springer.

    Lee, D.-H. and Akhavan, R. (2009). Scaling of polymer drag reduction with
    polymer and flow parameters in turbulent channel flow. Advances in Turbulence XII, pages 359-362.

    Lee, M. J. and Kim, J. (1991). The structure of turbulence in a simulated plane
    Couette flow. In Proc. 8th Symp. Turbulent Shear Flows, volume 5.

    Lindner, A., Vermant, J., and Bonn, D. (2003). How to obtain the elongational
    viscosity of dilute polymer solutions? Physica A, 319:125-133.

    Lo, W. and Lin, C. A. (2006). Mean and turbulence structures of Couette-
    Poiseuille flows at different mean shear rates in a square duct. Phys. Fluids,
    18(6):068103.

    Lumley, J. L. (1969). Drag reduction by additives. Annu. Rev. Fluid Mech.,
    1(1):367-384.

    Lumley, J. L. (1973). Drag reduction in turbulent flow by polymer additives. J.
    Polym. Sci. Macromol. Rev., 7:263-290.

    Lumley, J. L. (1979). Computational modelling of turbulent flows. Adv. Appl.
    Mech., 18:123-176.

    Lund, K. O. and Bush, W. B. (1980). Asymptotic analysis of plane turbulent
    Couette-Poiseuille flows. J. Fluid Mech., 96(1):81-104.

    Lundbladh, A. and Johansson, A. V. (1991). Direct simulation of turbulent spots
    in plane Couette flow. J. Fluid Mech., 229:499516.

    Lvov, V. S., Pomyalov, A., Procaccia, I., and Tiberkevich, V. (2004). Drag reduction by polymers in wall bounded turbulence. Phys. Rev. Lett., 92(24):244503.

    Madabhushi, R. K. and Vanka, S. P. (1991). Large eddy simulation of turbulence driven secondary flow in a square duct. Phys. Fluids A, 3(11):2734-2745.

    Marusic, I., Mathis, R., and Hutchins, N. (2010). Predictive model for wallbounded turbulent flow. Science, 329(5988):193-196.

    Marusic, I., Monty, J. P., Hultmark, M., and Smits, A. J. (2013). On the logarithmic region in wall turbulence. J. Fluid Mech., 716.

    McComas, S. (1967). Hydrodynamic entrance lengths for ducts of arbitrary cross section. ASME J. Basic Eng., 89(4):847-850.

    Melling, A. and Whitelaw, J. H. (1976). Turbulent flow in a rectangular duct.
    J. Fluid Mech., 78(02):289-315.

    Metzner, A. B. and Metzner, A. P. (1970). Stress levels in rapid extensional flows
    of polymeric fluids. Rheol. Acta, 9(2):174-181.

    Metzner, A. B. and Park, M. G. (1964). Turbulent flow characteristics of viscoelastic fluids. J. Fluid Mech., 20(02):291-303.

    Mirsepassi, A. and Rankin, D. D. (2014). Particle image velocimetry in viscoelastic fluids and particle interaction effects. Exp. Fluids, 55(1):1641.
    Nagata, M. (1990). Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infi nity. J. Fluid Mech., 217:519-527.

    Nikuradse, J. (1926). Untersuchungen uber die geschwindigkeitsverteilung in turbulenten stromungen. VDI Forsch, page 281.

    Nisizima, S. (1990). A numerical study of turbulent square-duct flow using an
    anisotropic k- model. Theor. Comput. Fluid Dyn., 2(1):61-71.

    Okino, S. and Nagata, M. (2012). Asymmetric travelling waves in a square duct.
    J. Fluid Mech., 693:57-68.

    Okino, S., Nagata, M., Wedin, H., and Bottaro, A. (2010). A new nonlinear
    vortex state in square-duct flow. J. Fluid Mech., 657:413-429.

    Oliver, D. and Bakhtiyarov, S. (1983). Drag reduction in exceptionally dilute
    polymer solutions. J. Non-Newtonian Fluid Mech., 12(1):113-118.

    Orszag, S. A. and Kells, L. C. (1980). Transition to turbulence in plane Poiseuille
    and plane Couette flow. J. Fluid Mech., 96(1):159-205.

    Papavassiliou, D. V. and Hanratty, T. J. (1997). Interpretation of large-scale
    structures observed in a turbulent plane Couette flow. Int. J. Heat Fluid Flow,
    18(1):55-69.

    Patankar, S. (1980). Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, Washington DC.

    Pattison, M. J., Premnath, K. N., and Banerjee, S. (2009). Computation of turbulent flow and secondary motions in a square duct using a forced generalized lattice boltzmann equation. Phys. Rev. E, 79(2):026704.

    Pearson, C. E. (1964). A Computational Method for Time-dependant Two-
    dimensional Incompressible Viscous Flow Problems. Report No. SRRC-RR-
    64-17, Sperry Rand Research Center, Sudbury, Massachusetts.

    Pinelli, A., Uhlmann, M., Sekimoto, A., and Kawahara, G. (2010). Reynolds
    number dependence of mean flow structure in square duct turbulence. J. Fluid
    Mech., 644:107-122.

    Pirozzoli, S., Bernardini, M., and Orlandi, P. (2014). Turbulence statistics in
    Couette flow at high Reynolds number. J. Fluid Mech., 758:327-343.

    Pirozzoli, S., Modesti, D., Orlandi, P., and Grasso, F. (2018). Turbulence and
    secondary motions in square duct flow. J. Fluid Mech., 840:631-655.

    Poole, R. J. (2002). Turbulent flow of Newtonian and non- Newtonian liquids
    through sudden expansions. PhD thesis, University of Liverpool, United Kingdom.

    Poole, R. J. (2010). Development-length requirements for fully developed laminar flow in concentric annuli. ASME J. Fluids Eng., 132(6):064501.

    Poole, R. J. (2012). The deborah and weissenberg numbers. British Soc. Rheol.
    Rheol. Bull, 53:32-39.

    Poole, R. J. (2016). Elastic instabilities in parallel shear flows of a viscoelastic
    shear-thinning liquid. Phys. Rev. Fluids, 1(4):041301.

    Poole, R. J. and Chhabra, R. P. (2010). Development length requirements for
    fully developed laminar pipe flow of yield stress fluids. ASME J. Fluids Eng.,
    132(3):034501.

    Poole, R. J. and Ridley, B. S. (2007). Development-length requirements for fully
    developed laminar pipe flow of inelastic non-Newtonian liquids. ASME J. Fluids Eng., 129(10):1281-1287.

    Prasad, A. K. (2000). Stereoscopic particle image velocimetry. Exp. Fluids,
    29(2):103-116.

    Procaccia, I., Lvov, V. S., and Benzi, R. (2008). Colloquium: Theory of drag
    reduction by polymers in wall-bounded turbulence. Rev. Mod. Phys., 80(1):225.

    Ptasinski, P. K., Boersma, B. J., Nieuwstadt, F. T. M., Hulsen, M. A., Van den
    Brule, B. H. A. A., and Hunt, J. C. R. (2003). Turbulent channel flow near
    maximum drag reduction: simulations, experiments and mechanisms. J. Fluid
    Mech., 490:251-291.

    Ptasinski, P. K., Nieuwstadt, F. T. M., Van Den Brule, B. H. A. A., and Hulsen,
    M. A. (2001). Experiments in turbulent pipe flow with polymer additives at maximum drag reduction. Flow Turbul. Combust., 66(2):159-182.

    Purnode, B. and Crochet, M. (1996). Flows of polymer solutions through contractions. Part 1: flows of polyacrylamide solutions through planar contractions. J. Non-Newtonian Fluid Mech, 65(2-3):269-289.

    Raffael, M., Willert, C. E., and Kompenhans, J. (2007). Particle image velocime-
    try: a practical guide. Springer Science & Business Media, New York.

    Reichardt, H. (1959). Gesetzmabigkeiten der geradlinigen turbulenten Couette
    stromung. Max-Planck-Institut fur Stromungsforschung, 22.

    Reif, B. A. P. and Andersson, H. I. (2002). Prediction of turbulence-generated
    secondary mean flow in a square duct. Flow Turbul. Combust., 68(1):41.

    Reynolds, O. (1883). An experimental investigation of the circumstanccs which
    determine whether the motion of water shall bc direct or sinnous, and of the
    law of resistance in parallel channels. Phil. Trans. R. Soc. Lond. A, 174:935{82.
    Reynolds, O. (1895). On the dynamical theory of incompressible viscous fluids
    and the determination of the criterion. Phil. Trans. R. Soc. Lond. A, 186:123-
    164.

    Robertson, J. M. (1959). On turbulent plane-Couette flow. In Proceedings of the 6th annual conference on fluid mechanics, University of Texas, Austin, TX,
    pages 169-182.

    Robertson, J. M. and Johnson, H. F. (1970). Turbulence structure in plane
    Couette flow. J. Engrg. Mech. Div., 96(6):1171-1182.

    Rodd, L., Scott, T. P., Cooper-White, J. J., and McKinley, G. H. (2005). Capillary
    break-up rheometry of low-viscosity elastic fluids. Appl. Rheol., 15:12-27.

    Romanov, V. A. (1973). Stability of plane-parallel Couette flow. Functional
    analysis and its applications, 7(2):137-146.

    Ryskin, G. (1987). Turbulent drag reduction by polymers: a quantitative theory.
    Phys. Rev. Lett., 59(18):2059.

    Shahmardi, A., Zade, S., Ardekani, M. N., Poole, R. J., Lundell, F., Rosti, M. E.,
    and Brandt, L. (2019). Turbulent duct flow with polymers. J. Fluid Mech.,
    859:10571083.

    Shi, L., Avila, M., and Hof, B. (2013). Scale invariance at the onset of turbulence
    in Couette flow. Phys. Rev. Lett., 110(20):204502.

    Simonsen, A. J. and Krogstad, P. A. (2005). Turbulent stress invariant analysis:
    Clari cation of existing terminology. Phys. Fluids, 17(8):088103.

    Sreenivasan, K. R. and White, C. M. (2000). The onset of drag reduction by
    dilute polymer additives, and the maximum drag reduction asymptote. J. Fluid
    Mech., 409:149-164.

    Stankovic, B. D., Belosevic, S. V., Crnomarkovic, N., Stojanovic, A. D.,
    Tomanovic, I. D., and Milicevic, A. R. (2016). Specifi c aspects of turbulent flow in rectangular ducts. Thermal Science, (00):189-189.

    Stone, P. A. and Graham, M. D. (2003). Polymer dynamics in a model of the
    turbulent buffer layer. Phys. Fluids, 15(5):1247-1256.

    Sureshkumar, R., Beris, A. N., and Handler, R. A. (1997). Direct numerical
    simulation of the turbulent channel flow of a polymer solution. Phys. Fluids,
    9(3):743-755.

    Tabor, M. and De Gennes, P. G. (1986). A cascade theory of drag reduction.
    EPL (Europhysics Letters), 2(7):519.

    Tatsumi, T. and Yoshimura, T. (1990). Stability of the laminar flow in a rectangular duct. J. Fluid Mech., 212:437-449.

    Taylor, G. I. (1938). The spectrum of turbulence. Proc. R. Soc. Lond. A, pages
    476-490.

    Tennekes, H. and Lumley, J. L. (1972). A first course in turbulence. MIT press.
    Tiederman, W. G. (1990). The effect of dilute polymer solutions on viscous drag
    and turbulence structure. In Structure of turbulence and drag reduction, pages
    187-200. Springer.

    Tillmark, N. and Alfredsson, P. H. (1992). Experiments on transition in plane
    Couette flow. J. Fluid Mech., 235:89-102.

    Toms, B. A. (1948). Some observations on the flow of linear polymer solutions
    through straight tubes at large Reynolds numbers. In Proceedings of the 1st
    International Congress on Rheology, volume 2, pages 135-141.

    Townsend, A. A. (1976). The structure of turbulent shear
    ow. Cambridge university press, New York, 2nd edition.

    Tsukahara, T., Kawamura, H., and Shingai, K. (2006). Dns of turbulent Couette flow with emphasis on the large-scale structure in the core region. J. Turbul.,
    (7):N19.

    Uhlmann, M., Kawahara, G., and Pinelli, A. (2010). Traveling-waves consistent
    with turbulence-driven secondary flow in a square duct. Phys. Fluids,
    22(8):084102.

    Uhlmann, M., Pinelli, A., Kawahara, G., and Sekimoto, A. (2007). Marginally
    turbulent flow in a square duct. J. Fluid Mech., 588:153-162.

    Van Doorne, C. W. H. and Westerweel, J. (2007). Measurement of laminar, transitional and turbulent pipe flow using stereoscopic-piv. Exp. Fluids, 42(2):259-279.

    Vinuesa, R., Schlatter, P., and Nagib, H. M. (2015). On minimum aspect ratio
    for duct flow facilities and the role of side walls in generating secondary flows. J. Turbul., 16(6):588-606.

    Virk, P. S. (1975). Drag reduction fundamentals. AIChE J., 21(4):625-656.

    Warholic, M. D., Massah, H., and Hanratty, T. J. (1999). Influence of dragreducing polymers on turbulence: effects of Reynolds number, concentration and mixing. Exp. Fluids, 27(5):461-472.

    Wedin, H., Bottaro, A., and Nagata, M. (2009). Three-dimensional traveling
    waves in a square duct. Phys. Rev. E, 79:065305.

    Whalley, R., Park, J. S., Kushwaha, A., Dennis, D. J. C., Graham, M. D., and
    Poole, R. J. (2017). Low-drag events in transitional wall-bounded turbulence.
    Phys. Rev. Fluids.

    White, C., Dubief, Y., and Klewicki, J. (2012). Re-examining the logarithmic
    dependence of the mean velocity distribution in polymer drag reduced wallbounded flow. Phys. Fluids, 24(2):021701.

    White, C. M. and Mungal, M. G. (2008). Mechanics and prediction of turbulent
    drag reduction with polymer additives. Annu. Rev. Fluid Mech., 40:235-256.
    White, F. M. (2006). Viscous fluid flow. McGraw-Hill, New York, 3rd edition.

    Xi, L. and Graham, M. D. (2010). Turbulent drag reduction and multistage
    transitions in viscoelastic minimal flow units. J. Fluid Mech., 647:421-452.

    Yasuda, K. Y., Armstrong, R. C., and Cohen, R. E. (1981). Shear flow properties
    of concentrated solutions of linear and star branched polystyrenes. Rheol. Acta, 20(2):163-178.

    Yunus, A. C. and Cimbala, J. M. (2006). Fluid mechanics fundamentals and
    applications. McGraw-Hill.

    Zell, A., Gier, S., Rafai, S., andWagner, C. (2010). Is there a relation between the
    relaxation time measured in CaBER experiments and the first normal stress
    coeficient? J. Non-Newtonian Fluid Mech., 165(19):1265-1274.

    Zhang, H., Trias, F. X., Gorobets, A., Tan, Y., and Oliva, A. (2015). Direct
    numerical simulation of a fully developed turbulent square duct
    ow up to Ret= 1200. Int. J. Heat Fluid Flow, 54:258-267.

    Zhang, Z. (2010). LDA application methods: laser Doppler anemometry for fluid dynamics. Springer Science & Business Media, New York.

    QR CODE