簡易檢索 / 詳目顯示

研究生: 呂宥蓉
Lu, Yu-Jung
論文名稱: 氮化物半導體電漿子奈米雷射之研究
Nitride Semiconductor Based Plasmonic Nanolasers
指導教授: 果尚志
Gwo, Shangjr
口試委員: 陳力俊
Chen, Lih-Juann
施至剛
Shih, Chih-Kang
安惠榮
Ahn, Hye-Young
張文豪
Chang, Wen-Hao
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 128, 23
中文關鍵詞: 電漿子雷射受激輻射引致表面電漿子放大氮化物半導體奈米柱氮化銦鎵二極體
外文關鍵詞: Plasmonic nanolaser, Spaser, Nitride Semiconductor, Nanorod, InGaN, p-n junction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 半導體雷射的微小化是未來發展高速、寬頻、低功耗光運算器與光通訊系統的關鍵。尤其將半導體雷射的三維(3D)尺寸縮小至次波長等級,以與積體電路中的電晶體尺寸相匹配,更是當今光電科技的研究焦點。然而傳統半導體雷射受限於光學繞射極限,要能達到雷射所需的回饋機制,必須有至少光波長長度的光共振腔,相較於現今只有幾十個奈米的電晶體尺寸,有著一段不小的差距。在 2003 年,Bergman 和 Stockman 提出了 Spaser (Surface Plasmon Amplification by Stimulated Emission of Radiation,受激輻射引致表面電漿子放大)的理論[1],提倡以表面電漿子 (Surface Plasmon)達成雷射所需的回饋機制來克服此困難。表面電漿子是透過激發貴金屬材料表面產生之自由電子密度集體振盪波,它可以在貴金屬與介電質界面的次波長範圍內有效地將耦合埸壓縮到奈米尺度。
    本論文利用此概念開發一種可突破繞射極限的新型奈米半導體雷射: 以電漿子共振腔取代傳統的光學共振腔,成功的將雷射的元件體積縮小到遠小於光波波長的奈米尺度。此種電漿子奈米雷射與電晶體同為「金屬-氧化物-半導體」結構,未來將很適合用於奈米光子學之實際應用
    。本論文中,我們利用原子層平坦的磊晶銀膜作為低損耗的電漿子傳遞平台,搭配5 nm的低折射率介電材料以及分子束磊晶技術成長的高光增益係數之氮化銦鎵/氮化鎵 (InGaN/GaN) 核殼 ( Core-Shell ) 結構奈米柱為雷射必須的增益介質; 由於所用材料皆具有極高品質的材料特性,因而可以成功實現最小的半導體雷射。這種新型雷射結構所需的回饋機制:由於銀的表面電漿子共振頻率在可見光波段,當氮化銦鎵受激發出可見光時,兩者間會形成光子與電漿子的耦合態,以構成雷射必需的回饋機制,並將電磁波能量有效地侷限在中間等效折射率較低的介電層內。不同於過去文獻之多晶結構的銀膜(嚴重的電漿子散射及損耗)必需由高功率脈衝雷射激發的奈米雷射
    ,此研究首次揭露以極高光增益係數 (10,000 cm-1) 的全彩發光氮化物半導體增益介質搭配上低能量損耗的電漿子共振腔,實現了可以連續波 (Continuous Wave) 的方式運作且具有極低的閥值並可於液態氮環境下工作,尺寸可比擬電晶體的半導體奈米雷射。此外,雙光子相干實驗也首次證實了此類電漿子雷射的雷射光具有時間同調性。模擬結果並指出,金屬歐姆損耗26% 的能量,32%能量輻射入矽基板,14% 的能量以遠場雷射光形式釋放,28% 能量於銀膜表面以近場(near-field)的同調表面電漿子波存在。其中我們直接觀察的量值只有遠場雷射光。結合時間同調性證據可間接推衍得此元件同時存在近場的奈米受激輻射表面電漿子放大源 (nanospaser)。特別的是,本論文亦實驗證實了氮化物半導體本身優越材料特性,此材料在光電元件方面具有相當高的應用潛力: (i) 電性:氮化鎵(GaN)已證實可成功製作p型及n型摻雜,並具有良好的二極體電性。(ii)光性: 氮化銦鎵(InGaN)合金是一個發光波長可連續調控的寬能隙半導體,其發光波長可涵蓋全可見光波段。結合此光電特性,我們可利用奈米柱結構實現真正的多彩發光次波長光源。其遠程的發展目標是將此雷射運用於光運算系統以取代目前電晶體為主的電運算系統,理論預測其運算速度可提升1000倍[2]。此外,透過將光子元件尺寸縮小到與電晶體相仿,可促成在單一矽晶片上整合電漿子及奈米電子元件的發展平台拓展其實用的價值。結合氮化物半導體的優越光電特性以及搭配上低能量損耗的電漿子共振腔,研發電激發光的奈米雷射來取代現有的光激發奈米雷射為當前的主流課題,可為未來發展積體整合型高速、寬頻、低功耗光世代科技有所助益。另外,在生物醫學應用上也可發展超高解析生物影像。在半導體雷射問世後的五十年後,本研究成果寫下一個全球最小的半導體雷射的紀錄,並證實雷射微型化將不再受制於共振腔的光學繞射極限。


    Size mismatches between electronics and photonics have been a huge barrier to realize on-chip optical communications and computing systems. The minimum size of conventional semiconductor lasers utilizing dielectric cavity resonators is governed by the optical diffraction limit (λ/2n)3. The recent surge of research interest in nanoplasmonics has been largely due to its capability to break the diffraction limit. In this dissertation, we present a record smallest semiconductor nanolaser based on surface plasmon amplification by stimulated emission of radiation (spaser). In plasmonic cavities, the coupling of photons and plasmons (a hybrid system) on noble metal surfaces at optical frequencies constitutes the necessary spaser feedback mechanism. However, direct observation of spaser has not been conducted. Only the far-field radiation (lasing) of spaser (so-called plasmonic nanolasers) was observed, and the plasmonic nanolaser emissions were first spectrally and temporally resolved in this study.
    In Chapter 1, the background context of photonic and plasmonic nanolaser research is provided. The theoretical background of spaser is also briefly described. In Chapter 2, the related experimental techniques are presented to explore the lasing features of nanolasers. In Chapters 3 and 4, the non-polar nitride semiconductor (InGaN) nanorods with highly crystalline quality is discussed, grown using plasma-assisted molecular beam epitaxy (PAMBE), served as efficient gain media for realizing plasmonic nanolasers. Chapter 4 presents a plasmonic nanolaser consisting of an epitaxial growth silver film coupled with a single epitaxial growth InGaN/GaN nanorod. Nevertheless, overcoming the losses inherent to metals remains a fundamental challenge. The epitaxial approach reported in this study provides a scalable platform for low-loss, active nanoplasmonics. Therefore, 3D diffraction-unlimited nanolasers were realized and operated in continuous-wave conditions, above liquid nitrogen temperature, and in a nearly 100% polarized lasing mode. According to theoretical studies, a large proportion of energy emissions are transformed into in-plane directional and coherent surface plasmon (as a spaser). In Chapter 5, we introduce the single-mode, all-color plasmonic nanolasers. By optimizing the metal-oxide-semiconductor (MOS) structure design, nanolasers exhibiting an ultralow threshold can be fabricated. The temporal coherence signature denotes the “thresholdless” blue plasmonic nanolaser. In Chapter 6, the electrical properties of axial p–n junctions in GaN nanorods are described; the results indicate that nitride semiconductors are a prerequisite for electrically driven photonic devices in the future. Chapter 7 presents a single InGaN nano light emitting diode (LED) that comprises a single InGaN nanodisk embedded in a GaN p-n nanorod. This nano-LED can be used as a subwavelength light source that possesses spatial, spectral, and polarization controlling capabilities, which are crucial for extending optical imaging and lithography beyond the diffraction limit. In this study, the growth of high-quality nitride semiconductor nanorods by using PAMBE offered several advantages for broadband-tunable light emission in the full visible spectrum and amphoteric doping (for both n- and p-type GaN) for solid state lighting. Therefore, electrically driven nitride semiconductor-based plasmonic nanolasers are expected to be employed in multi-functional on-chip optoelectronic devices in the near future.

    Abstracts Contents…………………………………………………………………………………………… I List of Figures……………………………………………………………………………………..IV Chapter 1 Introduction………………………………………………………………………….. .1 1.1 Background of Semiconductor Lasers……………………………………………………...1 1.2 Motivation for the Development of Plasmonic Nanolasers………………………………...2 1.3 Theoretical Background of Plasmonic Nanolasers and Spasers…………………………....4 1.3.1 Basic Theory of Surface Plasmon Polaritons…………………………………………4 1.3.2 Surface Plasmon Amplification by Stimulated Emission of Radiation……………….6 1.4 Plasmonic versus Photonic Cavities…………………………………………………………9 1.5 Requirements of Low-Loss Plasmonic Materials and High-Gain Media…………………..16 Chapter 2 Experimental Methods………………………………………………………………...21 2.1 Sample Preparation………………………………………………………………………….21 2.1.1 III-Nitride Nanorods Growth by PAMBE…………………………………………….21 2.1.2 Epitaxial Silver Film Growth by MBE………………………………………………..23 2.1.3 Atomic Layer Deposition (ALD)……………………………………………………...23 2.2 Optical Measurements………………………………………………………………………25 2.2.1 Temperature Dependent Micro-Photoluminescence (μ-PL) Measurement….………..25 2.2.2 Time-resolved μ-PL Measurement…………………………………………………....26 2.2.3 Second Order Photon Correlation Function Measurement…………………………....28 2.3 Electrical Measurements…………………………………………………………………..... 32 2.3.1 Device Fabrication…………………………………………………………………….32 2.3.2 μ-Electroluminescence (EL) Measurement…………………………………………....35 Chapter 3 Characteristics of InGaN/GaN Nanorods…………………………………………….36 3.1 Introduction to the Properties of InxGa1-xN Alloys…………………………………………. 36 3.2 Optical Properties of Non-Polar Nitride Heterostructures………………………………….. 38 3.2.1 Absence of Polarization Effects………………………………………………………. 38 3.2.2 Large Optical Gain Coefficient……………………………………………………….. 40 3.3 Optical Properties of Non-Polar InxGa1-xN/GaN Nanorods Growth by PAMBE…………... 41 3.3.1 InGaN/GaN Core-Shell Nanorods……………………………………………………. 41 3.3.2 Single InGaN Nanodisk Embedded in GaN p-n Nanorods…………………………… 48 3.4 Possible Device Applications of InGaN Alloy Semiconductors…………………..………... 49 Chapter 4 Single InGaN Nanorod Plasmonic Nanolaser………………………………………...51 4.1 Motivation…………………………………………………………………………………... 52 4.2 Device Structure……………………………………………………………………………..52 4.2.1 Epitaxial Silver Film…………………………………………………………………...54 4.2.2 Gain Medium…………………………………………………………………………..55 4.3 Experimental Signatures of Lasing…………………………………………………………. 59 4.4 Emission Polarization Properties of the Plamonic Nanolaser……………………………… 65 4.5 Discussion..……………………………………………………………………………......…69 4.5.1 Comparison between Epitaxial Ag Films and Thermal Ag Films………………..……69 4.5.2 Laser versus Spaser………………………………………………………………….... 72 Chapter 5 InxGa1-xN Nanorod Based All-color Plasmonic Nanolasers……………………...…. 75 5.1 Motivation for the All-Color Nanolasers …………………………………………………....76 5.2 InxGa1–xN@ GaN Nanorods as Efficient Gain Media across the Visible Spectrum……….. .77 5.3 All-Color InGaN@GaN Nanorod Plasmonic Nanolasers…………………………………... 80 5.4 Evidence for Thresholdless Blue Plasmonic Nanolaser……………………………………. .85 5.4.1 Temperature-Dependent Lasing Threshold………………………………………….....85 5.4.2 Lasing/Spasing Mechanism………………………………………………………….....88 5.4.3 Temporal Coherence…………………………………………………………………...93 Chapter 6 Dynamic Visualization of Axial p–n Junctions in Single Gallium Nitride Nanorod under Electrical Bias…………………………………………………………………. ..96 6.1 Introduction to One Dimensional Semiconductor Axial p–n Junctions……………………...96 6.2 Structural Characterization of GaN nanorods with Axial p–n Junctions………………….. ..98 6.3 Secondary Electron Imaging Technique for Electrostatic Potential Mapping of Semiconductor Nanostructures…………………………………………………………….101 6.4 in-situ Electrical Measurements of Single GaN Nanorod p–n Junction Device in FESEM..104 6.5 Visualization of Electrostatic Potential Variation across the in-situ Biased p–n Junctions..106 6.6 Discussion of the Depletion Widths and the Carrier Concentrations………………………108 Chapter 7 Single InGaN Nano-LED as Full-Color Subwavelength Light Sources………...… 111 7.1 Motivation…………………………………………………………………………………. 111 7.2 Optoelectronic Characteristics of InGaN Nano-LEDs…………………………………...…113 7.2.1 Sample Structure……………………………………………………………………113 7.2.2 Electrical Properties of Single InGaN/GaN Nanodisk-in-Nanorod LED…………..114 7.2.3 Single InGaN/GaN Nanodisk-in-Nanorod LED as Full-Color Nano-Emittors…….116 7.2.4 Additional Optical Polarization Properties of the Nano-LEDs……………………..117 7.3 Single-Nanorod LED as an Exposure Light Source for Subwavelength Photolithography…………………………………………………………………………..120 7.3.1 Nanolithographic Process……………………………………………………………..120 7.3.2 Using Single-Nanorod LED as a Local Exposure Light Source……………………...122 Chapter 8 Conclusions and Future Perspective .………………………………………………..126 References…………………………………………………………………………………………….i

    1. D. J. Bergman and M. I. Stockman, Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).
    2. M. I. Stockman, The spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt. 12, 024004 (2010).
    3. T. H. Maiman, Stimulated optical radiation in ruby. Nature 187, 493 (1960).
    4. A. Einstein, On the quantum mechanics of radiation. Z. Phys. 18,121 (1917).
    5. S. Haroche and D. Kleppner, Cavity quantum electrodynamics. Phys. Today B 42, 24 (1989).
    6. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys and R. O. Carlson, Coherent light emission from GaAs junctions. Phys. Rev. Lett. 9, 366 (1962).
    7. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, Tunable nanowire nonlinear optical probe. Nature 447, 1098 (2007).
    8. S. A. Asher, V. L. Alexeev, A. V. Goponenko, A. C. Sharma, I. K. Lednev, C. S. Wilcox, and D. N. Finegold, Photonic crystal carbohydrate sensors: low ionic strength sugar sensing. J. Am. Chem. Soc.125, 3322 (2003).
    9. M. Loncar, A. Scherer, and Y. Qiu, Photonic crystal laser sources for chemical detection. Appl. Phys. Lett. 82, 4648 (2003).
    10. P. Alivisatos, The use of nanocrystals in biological detection. Nature Biotech. 22, 47 (2003).
    11. R. W. Boyd and J. E. Heebner, Sensitive disk resonator photonic biosensor. Appl. Opt. 40, 5742 (2001).
    12. E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, Enhanced modulation bandwidth of nanocavity light emitting devices. Opt. Express 17, 7790 (2009).
    13. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia et al., Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nature Photon. 3, 220 (2009).
    14. S. Strauf, F. Jahnke, Single quantum dot nanolaser. Laser Photon. Rev. 5, 607 (2011).
    15. F. J. Garcia-Vidal and E. Moreno, Applied physics: Lasers go nano. Nature 461, 604 (2009).
    16. M. Brongersma and V. Shalaev, The case for plasmonics. Science 328, 440 (2010).
    17. H. A. Atwater, The promise of plasmonics. Scientific American 17, 56 (2007).
    18. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile and X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photon. 2, 496 (2008).
    19. P. Nagpal, N. C. Lindquist, S.-H. Oh and D. J. Norris, Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594 (2009).
    20. J.-S. Huang, et al. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nature Commun. 1, 150 (2010).
    21. W. L. Barnes, A. Dereux and T. W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824 (2003).
    22. S. A. Maier and H. A. Atwater, Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005).
    23. D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nature Photon. 4, 83 (2010).
    24. J. A. Schuller et al., Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193 (2010).
    25. M. T. Hill et al., Lasing in metallic-coated nanocavities. Nature Photon. 1, 589 (2007).
    26. N. Niu, T-L Liu, I. Aharonovich, K. J. Russell, A. Woolf, T. C. Sadler, H. A. R. El-Ella, M. J. Kappers, R. A. Oliver, and E. L. Hu, A full free spectral range tuning of p-i-n doped gallium nitride microdisk cavity. Appl. Phys. Lett. 101, 161105 (2012).
    27. J. R. Sambles, G. W. Bradbery and F. Z. Yang, Optical-excitation of surface-plasmons. Contemp. Phys. 32, 173 (1991).
    28. S.A. Maier, Plasmonics fundamentals and applications (Springer, New York, 2007).
    29. M. I. Stockman, Spasers explained. Nature Photon. 2, 327 (2008).
    30. M. T. Hill et al., Lasing in metallic-coated nanocavities. Nature Photon. 1, 589 (2007).
    31. M. P. Nezhad et al., Room-temperature subwavelength metallo-dielectric lasers. Nature Photon.4, 395 (2010).
    32. M. A. Noginov et al., Demonstration of a spaser-based nanolaser. Nature 460, 1110 (2009).
    33. R. F. Oulton et al., Plasmon lasers at deep subwavelength scale. Nature 461, 629 (2009).
    34. R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal and X. Zhang, Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Mater. 10, 110 (2011).
    35. C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn and S. Gwo, Plasmonic green nanolaser based on a metal-oxide-semiconductor structure. Nano Lett. 11, 4256 (2011).
    36. D. Li and M. I. Stockman, Electric spaser in the extreme quantum limit. Phys. Rev. Lett. 110, 106803 (2013).
    37. P. B. Johnson and R. W. Christy, Optical constants of the noble metals. Phys. Rev. B 9, 5056 (1974).
    38. H. Yokohama, Physics and device applications of optical microcavities. Science 256, 66 (1992).
    39. S. Noda, Seeking the ultimate nanolaser. Science 314, 260 (2006).
    40. H. Altug, D. Englund, and J. Vučković, Ultrafast photonic crystal nanocavity laser. Nature Phys. 2, 484 (2006).
    41. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).
    42. C. Schneider et al., An electrically pumped polariton laser. Nature 497, 348 (2013).
    43. S. H. Kwon et al., Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett. 10, 3679 (2010).
    44. J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski and T. W. Odom, Plasmonic bowtie nanolaser arrays. Nano Lett. 12, 5769 (2012).
    45. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, Thresholdless nanoscale coaxial lasers. Nature 482, 204 (2012).
    46. P. Ginzburg, and A. V. Zayats, Linewidth enhancement in spasers and plasmonic nanolasers. Opt. Express 21, 2147 (2013).
    47. K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, Large spontaneous emission enhancement in plasmonic nanocavities. Nature Photon. 6, 459 (2012).
    48. Birth of the nanolaser, Nature Photon. 3, 545 (2009).
    49. A. V. Zayats and S. A. Maier, Active plasmonics and tuneable plasmonic metamaterials. (John Wiley & Sons, Inc., Hoboken, New Jersey. 2013)
    50. P. R. West et al., Searching for better plasmonic materials. Laser Photon. Rev. 4, 795 (2010).
    51. E. D. Palik, Handbook of Optical Constants of Solids [electronic resource] (Academic press, San Diego, 1998).
    52. P. Berini and I. De Leon, Surface plasmon-polariton amplifiers and lasers. Nature Photon. 6, 16 (2012).
    53. A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco and A. Y. Cho, Single mode surface plasmonic laser. Appl. Phys. Lett. 76, 2164 (2000).
    54. G. W. Bryant, F. J. G. de Abajo and J. Aizpurua, Mapping the plasmon resonances of metallic nanoantennas. Nano Lett. 8, 631 (2008).
    55. S. D. Brorson and H. A. Haus, Diffraction gratings and geometrical optics. J. Opt. Soc. Am. B 5, 247 (1998).
    56. K. L. Shaklee, R. E. Nahory and R. F. Leheny, Optical gain in semiconductors. J. Lumin. 7, 284 (1973).
    57. A. Y. Cho and J. R. Aethur, Molecular beam epitaxy. Jr. Prog. Solid State Chem. 10, 157 (1975).
    58. Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C-K. Shih and S. Gwo, Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450 (2012).
    59. H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si(111) by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 89, 243105 (2006).
    60. J. Müller et al., Gain analysis of blue nitride-based lasers by small signal modulation. Appl. Phys. Lett. 96, 131105 (2010).
    61. Yu. A. Vlasov, K. Luterova, I. Pelant, B. Hönerlage and V. N. Astratov, Optical gain of CdS quantum dots embedded in 3D photonic crystals. Thin Solid Films 318, 93 (1998).
    62. A. R. Smith, K.-J. Chao, Q. Niu and C. K. Shih, Formation of atomically flat silver films on GaAs with a "silver mean" quasi periodicity. Science 273, 226 (1996).
    63. M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George. Low-temperature Al203 atomic layer deposition. Chem. Mater. 16, 639 (2004).
    64. C.-C. Hong, H. Ahn, C.-Y. Wu, and S. Gwo, Strong green photoluminescence from InxGa1-xN/GaN nanorod arrays, Opt. Express 17, 17227 (2009).
    65. E. M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).
    66. M. Fox, Quantum optics - an introduction. (Oxford, 2006).
    67. D. Dravins, Photonic astronomy and quantum optics. (Springer, 2007).
    68. R. Hanbury Brown and R. Q. Twiss. A test of a new type of stellar interferometer on sirius. Nature 178 ,1046 (1956).
    69. E. F. Schubert and J. K. Kim, Sold-state light sources getting small. Science 308, 1274 (2005).
    70. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers and M. G. Craford, Status and future of high-power light-emitting diodes for solid-state lighting. J. Disp. Technol. 3, 160 (2007).
    71. H. Ohta, S. P. DenBaars and S. Nakamura, Future of group-III nitride semiconductor green laser diodes, J. Opt. Soc. Am. B 27, B45 (2010).
    72. T. Mukai, M. Yamada and S. Nakamura, Characteristics of InGaN-based uv/blue/green/amber/red light-emitting diodes. Jpn. J. Appl. Phys. 38, 3976 (1999).
    73. T. Xu, A. Yu. Nikiforov, R. France, C. Thomidis, A. Williams and T. D. Moustakas, Blue–green–red LEDs based on InGaN quantum dots grown by plasma-assisted molecular beam epitaxy. Phys. Stat. Sol. A 204, 2098 (2007).
    74. C. J. Humphreys, Solid-state lighting. MRS Bull. 33, 459 (2008).
    75. X. Li, X. Ni, J. Lee, M. Wu, U. Ozgur, H. Morkoc, T. Paskova, G. Mulholland and K. R. Evans, Efficiency retention at high current injection levels in m-plane InGaN light emitting diodes. Appl. Phys. Lett. 95, 121107 (2009).
    76. J. Lee, X. Li, X. Ni, U. Ozgur, H. Morkoc, T. Paskova, G. Mulholland and K. R. Evans, On carrier spillover in c- and m-plane InGaN light emitting diodes. Appl. Phys. Lett. 95, 201113 (2009).
    77. S.-P. Chang, T.-C. Lu, L.-F. Zhuo, C.-Y. Jang, D.-W. Lin, H.-C. Yang, H.-C. Kuo and S.-C. Wang, Low droop nonpolar GaN/InGaN light emitting diode grown on m-plane GaN substrate. J. Electrochem. Soc. 157, H501 (2010).
    78. J. Wu et al., Full-solar-spectrum photovoltaic material system. J. Appl. Phys. 94, 6477 (2003).
    79. V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo and P. Lugli, Effects of macroscopic polarization in III-V nitride multiple quantum wells. Phy. Rev. B 60, 8849 (1999).
    80. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche and K. H. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865 (2000).
    81. H. Masui, S. Nakamura, S. P. DenBaars and U. K. Mishra, Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges. IEEE Trans. Electron Devices 57, 88 (2010).
    82. H.-W. Lin, Y.-J. Lu, H.-Y. Chen H.-M. Lee, and S. Gwo. InGaN/GaN nanorod array white light-emitting diode. Appl. Phys. Lett. 97, 073101 (2010).
    83. T. Onuma, K. Okatomo, H. Ohta, and S. F. Chichibu, Anisotropic optical gain in m-plane InxGa1−xN/GaN multiple quantum well laser diode wafers fabricated on the low defect density freestanding GaN substrates. Appl. Phys. Lett. 93, 091112 (2008).
    84. A. Tyagi, R. M. Farrell1, K. M. Kelchner, C. Y. Huang, P. S. Hsu, D. A. Haeger, M. T. Hardy, C. Holder, K. Fujito, D. A. Cohen, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, Continuous-wave operation of 520 nm green InGaN-based laser diodes on semi-polar [20–21] GaN substrates. Appl. Phys. Express 3, 011002 (2010).
    85. F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, and C. M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5, 2287 (2005).
    86. C. Yang, Z. Zhong, and C. M. Lieber, Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 310, 1304 (2005).
    87. E. D. Minot, F. Kelkensberg, M. van Kouwen, J. A. van Dam, L. P. Kouwenhoven, V. Zwiller, M. T. Borgström, O. Wunnicke, M. A. Verheijen, and E. P. A. M. Bakkers, Single Quantum Dot Nanowire LEDs. Nano Lett. 7, 367 (2007).
    88. H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang and K. S. Chung, High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano Lett. 4, 1059 (2004).
    89. L. W. Tu, C. L. Hsiao, T. W. Chi, I. Lo, and K. Y. Hsieh, Self-assembled vertical GaN nanorods grown by molecular-beam epitaxy. Appl. Phys. Lett. 82, 1601 (2003).
    90. C.-T. Kuo, K.-K. Chang, H.-W. Shiu, C.-R. Liu, L.-Y. Chang, C.-H. Chen and S. Gwo, Natural band alignments of InN/GaN/AlN nanorod heterojunctions. Appl. Phys. Lett. 99, 122101 (2011).
    91. M. A. Moram and M. E. Vickers, X-ray diffraction of III-nitrides. Rep. Prog. Phys.72, 036502 (2009).
    92. S. Nakamura, The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 281, 956 (1998).
    93. S. Nakamura and S. F. Chichibu, Introduction to nitride semiconductor blue lasers and light emitting diodes. (Taylor &Francis, London, 2000).
    94. Y. S. Lu, C. L. Ho, J. A. Yeh, H. W. Lin and S. Gwo, Anion detection using ultrathin InN ion selective field effect transistors. Appl. Phys. Lett. 92, 212102 (2008).
    95. H.-Y. Chen, Y.-C. Yang, H.-W. Lin, S.-C. Chang, and S. Gwo, Polarized photoluminescence from single GaN nanorods: Effects of optical confinement Opt. Express 16, 13465 (2008).
    96. M. T. Hill, Status and prospects for metallic and plasmonic nano-lasers. J. Opt. Soc. Am. B 27, B36 (2011).
    97. K. J. Vahala, Optical microcavities. Nature 424, 839 (2003).
    98. O. Painter et al., Two-dimensional photonic band-gap defect mode laser. Science 284, 1819 (1999).
    99. A. Tandaechanurat et al., Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap. Nature Photon. 5, 91 (2011).
    100. H. Yu et al., Quantitative determination of the metastability of flat Ag overlayers on GaAs(110). Phys. Rev. Lett. 88, 016102 (2002).
    101. Y.-J. Lu, H.-W. Lin, H.-Y. Chen, Y.-C. Yang and S. Gwo, Single InGaN nanodisk light emitting diodes as full-color subwavelength light sources. Appl. Phys. Lett. 98, 233101 (2011).
    102. J. D. Jackson, Classical electrodynamics, (Wiley, New York, ed. 3, 1999), chap. 9.
    103. H. Wei and H. Eilers, From silver nanoparticles to thin films: Evolution of microstructure and electrical conduction on glass substrates. J. Phys. Chem. Sol. 70, 459 (2009).
    104. V. J. Logeeswaran et al., Ultrasmooth silver thin films deposited with a germanium nucleation layer. Nano Lett. 9, 178 (2009).
    105. L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits. (Wiley, New York, 1995).
    106. K. Nozaki, S. Kita, and T. Baba, Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Opt. Express 15, 7506 (2007).
    107. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis and V. A. Fedotov, Lasing spaser. Nature Photon. 2, 351 (2008).
    108. F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft and M. P. van Exter, Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett. 110, 206802 (2013).
    109. C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan and A. Nurmikko, Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nature Nanotech. 7, 335 (2012).
    110. M. C. Gather, K. Meerholz, N. Danz and K. Leosson, Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nature Photon. 4, 457 (2010).
    111. S. Nakamura, S. Pearton and G. Fasol, The blue laser diode, 2nd Ed. (Springer-Verlag, Berlin, 2000).
    112. C. Z. Ning, Semiconductor nanolasers. Phys. Status Solidi B 247, 774 (2010).
    113. Y.-J. Lu, M.-Y. Lu, Y.-C. Yang, H.-Y. Chen, L.-J. Chen and S. Gwo, Dynamic visualization of axial p–n junctions in single gallium nitride nanorods under electrical bias. ACS nano (accepted, 2013).
    114. X. Duan, Y. Huang, R. Agarwal and C. M. Lieber, Single-nanowire electrically driven lasers. Nature 421, 241 (2003).
    115. D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong and S. T. Lee, Small-diameter silicon nanowire surfaces. Science 299, 1874 (2003).
    116. P. Yang, R. Yan and M. Fardy, Semiconductor nanowire: What’s next? Nano Lett. 10, 1529 (2010).
    117. H. Yan, H. S. Choe, S. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen and C. M. Lieber, Programmable nanowire circuits for nanoprocessors. Nature 470, 240 (2011).
    118. X.-M. Zhang, M.-Y. Lu, Y. Zhang, L.-J. Chen and Z. L. Wang, Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv. Mater. 21, 2767 (2009).
    119. M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nanowire dye-sensitized solar cells. Nature Mater. 4, 455 (2005).
    120. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885 (2007).
    121. J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang and C.-S. Lee, Arrays of ZnO/ZnxCd1–xSe nanocables: Band gap engineering and photovoltaic applications. Nano Lett. 11, 4138 (2011).
    122. Y. Cui, Q. Wei, H. Park and C. M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289 (2001).
    123. L. Liao, J. Bai, R. Cheng, Y.-C. Lin, S. Jiang, Y. Qu, Y. Huang and X. Duan, Sub-100 nm channel length graphene transistors. Nano Lett. 10, 3952 (2010).
    124. K. Storm, G. Nylund, L. Samuelson and A. P. Micolich, Realizing lateral wrap-gated nanowire FETs: Controlling gate length with chemistry rather than lithography. Nano Lett. 12, 1 (2012).
    125. Y. Huang, X. Duan, Y. Cui and C. M. Lieber, Gallium nitride nanowire nanodevices. Nano Lett. 2, 101 (2002).
    126. F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet and C. M. Lieber, Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 4, 1975 (2004).
    127. Y. Dong, B. Tian, T. J. Kempa and C. M. Lieber, Coaxial group III−nitride nanowire photovoltaics. Nano Lett. 9, 2183 (2009).
    128. S. K. Lim, S. Crawford, G. Haberfehlner and S. Gradečak, Controlled modulation of diameter and composition along individual III–V nitride nanowires. Nano Lett. 13, 331 (2013).
    129. S. Hoffmann, J. Bauer, C. Ronning, T. Stelzner, J. Michler, C. Ballif, V. Sivakov and S. H. Christiansen, Axial p-n junctions realized in silicon nanowires by ion implantation. Nano Lett. 9, 1341 (2009).
    130. T. Kuykendall, P. Ulrich, S. Aloni and P. Yang, Complete composition tunability of InGaN nanowires using a combinatorial approach. Nature Mater. 6, 951 (2007).
    131. A. C. Twitchett-Harrison, T. J. V. Yates, S. B. Newcomb, R. E. Dunin-Borkowski and P. A. Midgley, High-resolution three-dimensional mapping of semiconductor dopant potentials. Nano Lett. 7, 2020 (2007).
    132. P. A. Midgley and R. E. Dunin-Borkowski, Electron tomography and holography in materials science. Nature Mater. 8, 271 (2009).
    133. T. H. P. Chang and W. C. Nixon, Electron beam induced potential contrast on unbiased planar transistors. Solid-State Electron. 10, 701 (1967).
    134. D. D. Perovic, M. R. Castell, A. Howie, C. Lavoie, T. Tiedje and J. S. W. Cole, Field-emission SEM imaging of compositional and doping layer semiconductor superlattices. Ultramicroscopy 58, 104 (1995).
    135. D. Venables, H. Jain and D. C. Collins, Secondary electron imaging as a two-dimensional dopant profiling technique: review and update. J. Vac. Sci. Technol. B 16, 362 (1998).
    136. C. P. Sealy, M. R. Castell and P. R. Wilshaw, Mechanism for secondary electron dopant contrast in the SEM. J. Electron. Microsc. 49, 311 (2000).
    137. S. L. Elliott, R. F. Broom and C. J. Humphreys, Dopant profiling with the scanning electron microscope—A study of Si. J. Appl. Phys. 91, 9116 (2002).
    138. B. Kaestner, C. Schönjahn and C. J. Humphreys, Mapping the potential within a nanoscale undoped GaAs region using a scanning electron microscope. Appl. Phys. Lett. 84, 2109 (2004).
    139. D. Tsurumi, K. Hamada and Y. Kawasaki, Energy-filtered imaging in a scanning electron microscope for dopant contrast in InP. J. Electron. Microsc. 59, S183 (2010).
    140. J. Jatzkowski, M. Simon-Najasek and F. Altmann, Novel techniques for dopant contrast analysis on real IC structures. Microelec. Reliab. 52, 2098 (2012).
    141. A. K. Henning, T. Hochwitz, J. Slinkman, J. Never, S. Hoffmann, P. Kaszuba and C. Daghlian, Two‐dimensional surface dopant profiling in silicon using scanning kelvin probe microscopy. J. Appl. Phys. 77, 1888 (1995).
    142. S. Yoshida, Y. Kanitani, R. Oshima, Y. Okada, O. Takeuchi and H. Shigekawa, Microscopic basis for the mechanism of carrier dynamics in an operating p-n junction examined by using light-modulated scanning tunneling spectroscopy. Phys. Rev. Lett. 98, 026802 (2007).
    143. C.-T. Kuo, H.-M. Lee, H.-W. Shiu, C.-H. Chen and S. Gwo, Direct imaging of GaN p-n junction by cross-sectional scanning photoelectron microscopy and spectroscopy. Appl. Phys. Lett. 94, 122110 (2009).
    144. E. C. Garnett, Y.-C. Tseng, D. R. Khanal, J. Wu, J. Bokor and P. Yang, Dopant profiling and surface analysis of silicon nanowires using capacitance–voltage measurements. Nature Nanotech. 4, 311 (2009).
    145. R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa and E. Abe, Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nature Mater. 10, 278 (2011).
    146. R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. v.d. Hart, T. Stoica and H. Lüth, Size-dependent photoconductivity in MBE-grown GaN-nanowires. Nano Lett. 5, 981 (2005).
    147. G. Cheng, A. Kolmakov, Y. Zhang, M. Moskovits, R. Munden, M. A. Reed, G. Wang, D. Moses and J. Zhang, Current rectification in a single GaN nanowire with a well-defined p–n junction. Appl. Phys. Lett. 83, 1578 (2003).
    148. P. Deb, H. Kim, Y. Qin, R. Lahiji, M. Oliver, R. Reifenberger and T. Sands, GaN nanorod schottky and p−n junction diodes. Nano Lett. 6, 2893 (2006).
    149. P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars and U. K. Mishra, Electrical characterization of GaN p-n junctions with and without threading dislocations. Appl. Phys. Lett. 73, 975 (1998).
    150. Y. S. Park, C. M. Park, C. J. Park, H. Y. Cho, S. J. Lee, T. W. Kang, S. H. Lee, J. E. Oh, K. H. Yoo and M. S. Son, Electron trap level in a GaN nanorod p-n junction grown by molecular-beam epitaxy. Appl. Phys. Lett. 88, 192104 (2006).
    151. A. Motayed, A. V. Davydov, M. D. Vaudin, I. Levin, J. Melngailis and S. N. Mohammad, Fabrication of GaN-based nanoscale device structures utilizing focused ion beam induced Pt deposition. J. Appl. Phys. 100, 024306 (2006).
    152. L. T. Romano, M. Kneissl, J. E. Northrup, C. G. Van de Walle and D. W. Treat, Influence of microstructure on the carrier concentration of Mg-doped GaN films. Appl. Phys. Lett. 79, 2734 (2001).
    153. X. Duan, Y. Huang, Y. Cui, J. Wang and C. M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66 (2001).
    154. E. Betzig and J. K. Trautman, Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257, 189 (1992).
    155. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).
    156. G. J. Leggett, Scanning near-field photolithography-surface photochemistry with nanoscale spatial resolution. Chem. Soc. Rev. 35, 1150 (2006).
    157. F. Huo, G. Zheng, X. Liao, L. R. Giam, J. Chai, X. Chen, W. Shim and C. A. Mirkin, Beam pen lithography. Nature Nanotech. 5, 637 (2010).
    158. K. Lieberman, S. Harush, A. Lewis and R. Kopelman, A light source smaller than the optical wavelength. Science 247, 59 (1990).
    159. J. Michaelis, C. Hettich, J. Mlynek and V. Sandoghdar, Optical microscopy using a single-molecule light source. Nature 405, 325 (2000).
    160. Y. Zhao, K. H. An, S. Chen, B. O’Connor, K. P. Pipe, and M. Shtein, Localized current injection and submicron organic light-emitting device on a pyramidal atomic force microscopy tip. Nano Lett. 7, 3645 (2007).
    161. J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett and D. G. Lidzey, Optical nanolithography using a scanning near-field probe with an integrated light source. Appl. Phys. Lett. 93, 213103 (2008).
    162. K. Hoshino, A. Gopal and X. Zhang, Diffraction Limit Using Integrated Nano Light-Emitting Probe Tip. IEEE J. Sel. Top. Quantum Electron. 15, 1393 (2009).
    163. K. Kishino, A. Kikuchi, H. Sekiguchi and S. Ishizawa, InGaN/GaN nanocolumn LEDs emitting from blue to red. Proc. SPIE 6473, 64730T (2007).
    164. J. T. Fourkas, Nanoscale Photolithography with Visible Light. J. Phys. Chem. Lett. 1, 1221 (2010).
    165. A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin and H. Park, Near-field electrical detection of optical plasmons and single-plasmon sources. Nature Phys. 5, 475 (2009).
    166. R.-M. Ma, X. Yin, R. F. Oulton, V. J. Sorger and X. Zhang, Multiplexed and electrically modulated plasmon laser circuit. Nano Lett. 12, 5396 (2012).
    167. Y.-S. No, J.-H. Choi, H.-S. Ee, M.-S. Hwang, K.-Y. Jeong, E.-K. Lee, M.-K. Seo, S.-H. Kwon and H.-G. Park, A Double-strip plasmonic waveguide coupled to an electrically driven nanowire LED. Nano Lett. 13, 772 (2013).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE