簡易檢索 / 詳目顯示

研究生: 陳宏彥
Chen, Hung Yen
論文名稱: 利用腔體尺寸設計機器人手部觸覺感測器之剪力感測靈敏度
Designing Shear Force Sensing Sensitivity of Tactile Sensors in Robot Hand through Cavity Size
指導教授: 陳榮順
Chen, RongShun
方維倫
Fang, WeiLeun
口試委員: 李昇憲
Li, Sheng Shian
劉育嘉
Liu, Yu Chia
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 90
中文關鍵詞: 觸覺感測器機器人手部剪力感測感測靈敏度
外文關鍵詞: Tactile sensor, Robot hand, Shear force sensing, Sensing sensitivity
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在機器人逐漸發展為取代照護人力的趨勢下,為了要使機器人手部抓取或是操控的動作更為順利,使用的觸覺感測器需要具備剪力感測的能力。在機器人的手部執行任務時,不同手的部位需要承受不同大小的力量,因此具有不同的感測靈敏度的需求。以往在設計感測靈敏度上,通常會設計感測結構的尺寸,但是若是要更改光罩,可能所有製程的光罩都要跟著變更,因此本研究提出一個新的設計參數:利用設計感測結構週遭的腔體尺寸,製作不同剪力感測靈敏度的元件。


    Following the trend where many robots have begun replacing the nursing needs, in order to make the movement of robot hand more fluent in grasping and manipulation, there is a requirement that the tactile sensors in their hands should possess the ability to sense shear force. When a robot hand carries out its job, there is a different need of sensing sensitivity on each zone of hand depending on the quantity of force applied. Previous work usually regards size of the sensing structure as a parameter of designing the sensing sensitivity. However, if the design has to be modified, all of the photomasks in fabrication process may be redrawn or disposed. We will propose a new parameter as we make use of the size of the cavity surrounding the sensing structure, and aim to fabricate tactile sensors with different sensing sensitivity.

    中文摘要 I Abstract II 誌謝 III 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-2.1 感測機制 3 1-2.2 機器人手部觸覺感測器之需求及規格 6 1-2.3 機器人手部觸覺感測器之設計 8 1-3 研究動機與目標 11 第二章 元件分析與模擬 23 2-1 壓阻效應 23 2-2 離子佈植 27 2-3 硼離子佈植電學特性 28 2-4 惠斯同電橋 30 2-5 接觸面的力學特性 30 2-6 元件設計與模擬 31 2-6.1 結構設計及感測能力分析 32 2-6.2 力量耦合分析 35 2-6.3 剪力感測靈敏度設計 36 第三章 製作流程與結果 52 3-1 製程步驟 52 3-2 問題討論與製程結果 55 3-2.1 問題討論 55 3-2.2 製程結果 58 第四章 元件量測結果 67 4-1 性能量測 67 4-1.1 力量施加方式及性能量測架設 67 4-1.2 性能量測結果 69 第五章 結論與未來工作 82 5-1 結論 82 5-2 未來工作 82 參考文獻 86

    [1] http://rtc.nagoya.riken.jp/RIBA, 2016.
    [2] http://www.twendyone.com, 2016.
    [3] https://www.weiss-robotics.com, 2016.
    [4] http://www.pressureprofile.com, 2016.
    [5] http://www.syntouchllc.com, 2016.
    [6] http://optoforce.com, 2016.
    [7] http://www.touchence.jp, 2016.
    [8] H.-K. Lee, S.-I. Chang, and E. Yoon, "A flexible polymer tactile sensor: Fabrication and modular expandability for large area deployment," Journal of Microelectromechanical Systems, vol. 15, pp. 1681-1686, 2006.
    [9] H.-K. Lee, J. Chung, S.-I. Chang, and E. Yoon, "Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors," Journal of Microelectromechanical Systems, vol. 17, pp. 934-942, 2008.
    [10] R. Surapaneni, Q. Guo, Y. Xie, D. Young, and C. H. Mastrangelo, "A three-axis high-resolution capacitive tactile imager system based on floating comb electrodes," Journal of Micromechanics and Microengineering, vol. 23, p. 075004, 2013.
    [11] M.-S. Kim, H.-R. Ahn, S. Lee, C. Kim, and Y.-J. Kim, "A dome-shaped piezoelectric tactile sensor arrays fabricated by an air inflation technique," Sensors and Actuators A: Physical, vol. 212, pp. 151-158, 2014.
    [12] D. J. Beebe, A. S. Hsieh, D. D. Denton, and R. G. Radwin, "A silicon force sensor for robotics and medicine," Sensors and Actuators A: Physical, vol. 50, pp. 55-65, 1995.
    [13] L. Beccai, S. Roccella, A. Arena, F. Valvo, P. Valdastri, A. Menciassi, M. C. Carrozza, and P. Dario, "Design and fabrication of a hybrid silicon three-axial force sensor for biomechanical applications," Sensors and Actuators A: Physical, vol. 120, pp. 370-382, 2005.
    [14] K. Kim, K.-R. Lee, Y.-K. Kim, D.-S. Lee, N.-K. Cho, W.-H. Kim, K.-B. Park, H.-D. Park, Y.-K. Park, J.-H. Kim, and J.-J. Park, "3-axes flexible tactile sensor fabricated by Si micromachining and packaging technology," IEEE MEMS 2006, Istanbul, Turkey, Jan., 2006, pp. 678-681.
    [15] N. Thanh-Vinh, N. Binh-Khiem, H. Takahashi, K. Matsumoto, and I. Shimoyama, "High-sensitivity triaxial tactile sensor with elastic microstructures pressing on piezoresistive cantilevers," Sensors and Actuators A: Physical, vol. 215, pp. 167-175, 2014.
    [16] R. S. Dahiya and M. Valle, Robotic tactile sensing: technologies and system., Heidelberg, Germany: Springer Science and Business Media, 2012.
    [17] R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry, A mathematical introduction to robotic manipulation., Boca Raton, FL: CRC press, 1994.
    [18] J. M. Wolfe, K. R. Kluender, D. M. Levi, L. M. Bartoshuk, R. S. Herz, R. L. Klatzky, S. J. Lederman, and D. M. Merfeld, Sensation & perception., Sunderland, MA: Sinauer, 2006.
    [19] L. A. Jones and S. J. Lederman, Human hand function., Oxford, UK: Oxford University Press, 2006.
    [20] M. Sohgawa, T. Mima, H. Onishi, T. Kanashima, M. Okuyama, K. Yamashita, M. Noda, M. Higuchi, and H. Noma, "Tactile array sensor with inclined chromium/silicon piezoresistive cantilevers embedded in elastomer," TRANSDUCERS’09, Denver, CO, Jun., 2009, pp. 284-287.
    [21] K. Noda, K. Hoshino, K. Matsumoto, and I. Shimoyama, "A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material," Sensors and Actuators A: physical, vol. 127, pp. 295-301, 2006.
    [22] H. Takahashi, A. Nakai, N. Thanh-Vinh, K. Matsumoto, and I. Shimoyama, "A triaxial tactile sensor without crosstalk using pairs of piezoresistive beams with sidewall doping," Sensors and Actuators A: Physical, vol. 199, pp. 43-48, 2013.
    [23] C.-C. Wen and W. Fang, "Tuning the sensing range and sensitivity of three axes tactile sensors using the polymer composite membrane," Sensors and Actuators A: Physical, vol. 145, pp. 14-22, 2008.
    [24] Y.-C. Liu, C.-M. Sun, L.-Y. Lin, M.-H. Tsai, and W. Fang, "A tunable range/sensitivity CMOS-MEMS capacitive tactile sensor with polymer fill-in technique," TRANSDUCERS’09, Denver, CO, Jun., 2009, pp. 2190-2193.
    [25] W.-C. Lai and W. Fang, "Novel two-stage CMOS-MEMS capacitive-type tactile-sensor with ER-fluid fill-in for sensitivity and sensing range enhancement," TRANSDUCERS’15, Anchorage, AK, Jun., 2015, pp. 1175-1178.
    [26]“應變規(Strain Gauge)誕生五十年之演變,” 三聯科技線上資料, 2006.
    [27] J. S. Dietrich, "Simmons and the Strain Gauge," Engineering and Science, vol. 50, pp. 19-23, 1986.
    [28] C. S. Smith, "Piezoresistance effect in germanium and silicon," Physical review, vol. 94, p. 42, 1954.
    [29] Y. Kanda, "Piezoresistance effect of silicon," Sensors and Actuators A: Physical, vol. 28, pp. 83-91, 1991.
    [30] Y. Kanda, "A graphical representation of the piezoresistance coefficients in silicon," IEEE Transactions on electron devices, vol. 29, pp. 64-70, 1982.
    [31] https://matenggroup.wordpress.com/ion-implantation/
    [32] P. V. Zant, Microchip fabrication., 3th Ed., New York, NY: McGraw-Hill, 1996.
    [33] http://www.cleanroom.byu.edu/ImplantConCal.phtml, 2016
    [34] C. Jacoboni, C. Canali, G. Ottaviani, and A. A. Quaranta, "A review of some charge transport properties of silicon," Solid-State Electronics, vol. 20, pp. 77-89, 1977.
    [35] H. Hertz, "On the contact of elastic solids," J. reine angew. Math, vol. 92, pp. 156-171, 1881.
    [36] K. L. Johnson, Contact mechanics., Cambridge, UK: Cambridge university press, 1987.
    [37] S. Timoshenko, and J. Goodier, Theory of Elasticity., New York, NY: McGraw-Hill, 1951.
    [38] S. Woinowsky-Krieger, and S. Woinowsky-Krieger, Theory of plates and shells., New York, NY: McGraw-Hill, 1959.
    [39] R. K. Willardson and A. C. Beer, Semiconductors and semimetals., Cambridge, MA: Academic press, 1977.
    [40] http://www.cleanroom.byu.edu/DopConCalc.phtml, 2016.
    [41] 林炯文, "應用垂直式導線與陽極接合於 SOI-MEMS 晶片之晶圓級封裝," 清華大學奈米工程與微系統研究所碩士論文, 2005.
    [42] 胡志帆, "新型撓性壓力及觸覺感測陣列之研究," 清華大學動力機械工程學系碩士論文, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE