簡易檢索 / 詳目顯示

研究生: 郭冠伶
Guo, Guan-Ling
論文名稱: 多樣性指標於有限島嶼模型之模擬研究
Biodiversity Index in the Finite Island Model: A Simulation Study
指導教授: 趙蓮菊
Chao, Anne
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 77
中文關鍵詞: 生物多樣性多樣性指標有限島嶼模型
外文關鍵詞: Biodiversity, Biodiversity Index, Finite Island Model
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文欲探討方向可分為兩部分,首先回顧 Hu & He (2005,2007)所提出有限島嶼模型下的物種豐富度分佈,進而探討物種豐富度、Shannon指標、Simpson指標,透過圖示說明理論值與模擬值間的偏誤與該理論式的適用範圍。為了修正估計上的偏誤,引用Latter (1972)的Simpson指標、Krow & Kimura (1964)的無限等位基因模型與Hsieh (2010)的分佈推測概念,提出一個局部區域群落的物種豐富度分佈。除了用適合度檢定驗證推測的正確性,進而推論出物種數、Shannon指標、Simpson指標三者的理論式。圖示指出,在群落數不超過50且遷移率小於5%時,理論值與模擬值之間的偏誤更小,顯示該分佈比傳統的物種豐富度分配更為接近真實情況。第二部分著重於β多樣性指標的特性。Jost (2009) 認為好的指標應具有對繁衍新物種機率的敏感度,進而能預估機率且了解整個生態機制。此處就遷移率、繁衍新物種機率、群落數、群落總個體數的變化對 、 與 指標有何影響做個扼要的討論。從此得知, 與 指標不僅對繁衍新物種機率有良好的預測效果,且對於其他參數變化都有相似的性質。


    目錄 第一章 緒論 1 第二章 模型與符號定義及文獻回顧 6 2.1 符號定義 6 2.2 單一群落的生物多樣性及其指標 7 2.3多群落多樣性、相似度及其指標 8 2.3.1 β多樣性指標的分解 9 2.3.2 Wilson & Shimda 的獨立性概念 9 2.3.3 Jost的多樣性指標公設 10 2.3.4 多群落的多樣性與相似度指標 11 2.4 模型假設與物種豐富度分佈 13 2.4.1 模型假設 13 2.4.2 區域群落的物種豐富度分佈 14 2.4.3 局部區域群落的物種豐富度分佈 15 第三章 多樣性指標於有限島嶼模型的應用 18 3.1. 物種數的多樣性 18 3.1.1 γ層級 19 3.1.2 α層級 20 3.2 Shannon指標的多樣性 21 3.2.1 γ層級 21 3.2.2 α層級 22 3.3 Simpson指標的多樣性 23 3.3.1 γ層級 24 3.3.2 α層級 25 第四章 物種相對豐富度分佈與多樣性指標 27 4.1 研究動機 27 4.2 Latter 的Simpson指標 27 4.3 局部區域群落物種豐富度的推測 30 4.4 適合度檢定與分群法則 31 4.4.1 適合度檢定 31 4.4.2 分群法則 33 4.5 模擬研究 33 4.5.1 模擬結論與分析( n=1 ) 34 4.5.2 模擬結論與分析( n=2~25) 35 4.6 α層級的多樣性指標 38 4.6.1 物種數 38 4.6.2 Shannon指標 39 4.7 β多樣性指標的特性與比較 41 第五章 結論與後續研究 46 附錄 48 附錄A 48 附錄B 53 附錄C 58 附錄D 63 參考文獻 71

    [1] Barton, N. H., & Slatkin, M. (1986). A Quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity, 56(3), 409-415.

    [2] Caswell, H. (1976). Community structure: a neutral model analysis. Ecological Monographs, 46(3), 327-354.

    [3] Chao, A., Jost, L., Chiang, S. C., Jiang, Y.-H., & Chazdon, R. L. (2008). A two-stage probabilistic approach to multiple-community similarity indices. Biometrics, 64(4), 1178-1186.

    [4] Crow, J. G. (1986). Basic concepts in population, quantitative, and evolutionary Genetics. New York: W.H. Freeman and Company.

    [5] He, F., & Hu, X.-S. (2005). Hubbell's fundamental biodiversity parameter and the Simpson diversity index. Ecology Letters, 8(4), 386-390.

    [6] Hill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54(2), 427-432.

    [7] Hu, X. S., He, F., & Hubbell, Stephen P. (2007). Species diversity in local neutral communities. The American Naturalist, 170(6), 844-853.

    [8] Hu, X.-S., He, F., & Hubbell, S. P. (2009). Community differentiation on landscapes: drift, migration and speciation. Oikos, 118(10), 1515-1523.

    [9] Hubbell, S. P. (1997). A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs. Coral Reefs, 16(5), S9-S21.

    [10] Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. New Jersey, USA: Princeton University Press.

    [11] Hsieh Tsung-Chen. (2009). Statistical analysis of beta biodiversity for multiple-community. Master thesis, NTHU, Hsinchu.

    [12] Hsieh Tsung-Chen. (2010).Species abundance distribution in local neutral community based on Latter’s theorem. Unpublished manuscript, NTHU, Hsinchu.

    [13] Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88(10), 2427-2439.

    [14] Jost, L. (2008). GST and its relatives do not measure differentiation. Molecular Ecology, 17(18), 4015-4026.

    [15] Kimura, M. C., J. F. (1978). Effect of overall phenotypic selection on genetic change at individual loci. Proceedings of the National Academy of Sciences of the United States of America, 75(12), 6168-6171.

    [16] Koleff, P., Gaston, K. J., & Lennon, J. J. (2003). Measuring beta diversity for presence-absence data. Journal of Animal Ecology, 72(3), 367-382.

    [17] Lande, R. (1996). Partitioning of species diversity, and similarity among multiple communities. Oikos, Vol. 76, No. 1 5-13

    [18] Latter, B. D. H. (1973). The island model of population differentiation: a general solution. Genetics, 73(1), 147-157.

    [19] MacArthur, R. (1965). Patterns of species diversity. Biology, 40(4), 510-533.

    [20] Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 70(12), 3321-3323.

    [21] Preston, F. W. (1948). The Commonness and rarity of species. Ecology, 29(3), 254-283.

    [22] Ruo-Ping Han. (2008). Statistical Estimation of Beta Diversity. Ph.D. dissertation, NTHU, Hsinchu.

    [23] Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688.

    [24] Vallade, M., & Houchmandzadeh, B. (2003). Analytical solution of a neutral model of biodiversity. Physical Review E, 68(6), 061902.

    [25] Whittaker, R. H. (1972). Evolution and measurement of species diversity, Taxon, Vol. 21(No. 2/3), 213-251.

    [26] Wright, S. (1943). Isolation by distance. Genetics, 28(2), 114-138

    [27] Wright, S. (1951). The genetical structure of populations. Annals of Eugenics, 15, 323-354

    [28] 余光中. (2008). 余光中幽默詩選. Taipei: 天下文化.

    [29] 徐源泰. (2005). 生物多樣性、生物技術與生物產業. 臺灣大學非同步課程網頁, Taipei , http://ceiba3.cc.ntu.edu.tw/course/06b004/paper/3.htm

    [30] 胡新生, 何芳良. (2007). 生物多样性的中性理论与多样性格局 Published manuscript, China.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE