研究生: |
吉宗驥 Chi, Chong-Chi |
---|---|
論文名稱: |
gamma-Fe2O3/CoO core/shell奈米粒子磁性質與介面微結構關係之探討 Investigation of relations between the interface microstructures and the magnetism of gamma-Fe2O3/CoO core/shell nanoparticles |
指導教授: |
歐陽浩
Ouyang, H. |
口試委員: |
林克偉
K.-W. Lin 張晃暐 H-W Chang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 156 |
中文關鍵詞: | 磁性奈米粒子 、介面混合 |
外文關鍵詞: | interfacial intermixing, gamma Fe2O3 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
加拿大J. van Lierop教授團隊以無水化學合成法製備出磁性core/shell -Fe2O3/CoO奈米粒子後,使用SQUID和Mössbauer光譜測量磁性質。由SQUID發現有接shell的奈米粒子會產生交換偏壓現象,且矯頑場也會變大。而觀察Mössbauer光譜則是發現core/shell奈米粒子對抗熱擾動的能力變得非常強,加拿大J. van Lierop教授團隊臆測主要原因為core/shell介面的intermixing造成。
所以本實驗主要是使用電子顯微鏡和EDS來觀察分析奈米粒子core/shell介面。EDS顯示在介面處主要是Co滲入-Fe2O3八面體空位的行為而不是鐵滲入CoO。分析HRTEM影像可以發現-Fe2O3在core/shell邊界處有Co滲入,且Co滲入會導致材料繞射點訊號改變。用此當作依據來判斷擴散深度並分析兩種製程溫度(150°C和235°C)對擴散深度的影響。發現當製備溫度150°C時Co的平均擴散深度為0.47nm。若製備溫度升高到235°C則Co的平均擴散深度為0.67nm。
使用VASP第一原理計算對Co擴散到不同位置做能量計算,得到Co擴散到-Fe2O3八面體空位能量最低代表最可能的情況。接著我們建立出模擬結構模擬intermixing行為並使用VASP第一原理計算來探討intermixing對磁性質的影響。我們發現Co擴散到-Fe2O3八面體空位會使整體磁化量變高,使材料更偏向鐵磁性。同時也發現Co擴散深度會影響磁化量,擴散深度深磁化量反而會下降,和 J. van Lierop教授觀測到的結果相符。
又在core/shell介面因為有氧離子存在,所以我們也建立了模擬結構來探討超交換性行為對磁性質的影響。
Prof. J. van Lierop et al and we have showed that the magnetism of core-shell nanoparticles (made of maghemite, -Fe2O3, cores and transition-metal and metal-oxide shells) is altered substantially by the interface, which is a doped iron-oxide layer formed naturally during the seed-mediated synthesis process, a route used typically to produce core-shell nanoparticles. Characteristics fundamental to useful applications, such as the anisotropy and superparamagnetic blocking temperature, were altered substantially with Cu, CoO, MnO, and NiO shells. To ascertain the origin of this behavior, the prototype -Fe2O3/CoO core-shell nanoparticles are described in detail. The magnetism originates essentially from an interfacial doped iron-oxide layer formed via migration of shell ions,e.g., Co2+, into octahedral site vacancies in the surface layers of the γ -Fe2O3 core. For this system, an overall Fe
morb/mspin = 0.15 ± 0.03 is measured (morb ∼ 0 for the Fe-oxides) and an enhanced Co morb/mspin = 0.65 ± 0.03 elucidates the origin of the unexpectedly high overall anisotropy of the nanoparticle. This interfacial layer isresponsible for the overall (e.g., bulk) magnetism and provides a perspective on how the magnetism of core-shell
nanoparticles manifests from the selected core and shell materials.
Within this work, TEM and first-principles calculations to prove the core/shell intermixing and magnetic property were performed in our group. By analyzing the HRTEM and EDS, the intermixing was confirmed, mainly by the doping of Co into the octahedral site vacancies of -Fe2O3. The average Co doping depths in different processing temperatures (150°C and 235°C) were 0.47nm and 0.67nm, respectively. The error of this measurement is within 5 percent through a simulation.
By first-principles calculations, the intermixing phase of -Fe2O3 with Co doping is ferromagnetic, with even higher magnetization as compared to that of pure -Fe2O3. Besides, Co doping (same numbers) into different octahedral sites can cause different magnetizations.
[1]. MAGNETIC MATERIALS Fundamentals and Applications Second edition NICOLA A. SPALDIN
[2]. B.D.Cullity., Introduction to magnetic magerials(1972)
[3]. S. N. Piramanayagam, JOURNAL OF APPLIED PHYSICS 102, 011301 (2007)
[4]. R. K. Zheng, Hui. Liu, Y. Wang, and X. X. Zhang, J. Appl. Phys. 96 (2004) 5370.
[5]. T. J. Moran, J. M. Gallego, I. K. Schuller, J. Appl. Phys. 78 (1995) 1887.
[6]. A. N. Dobrynin, D. N. levlev, K. Temst P. Lievens, J. Margueritat, J. Gonzalo, C. N. Afonso, S. Q. Zhou, A. Vantomme, E. Piscopiello, and G. Van Tendeloo, Appl. Phys. Lett. 87, (2005) 012501 .
[7]. J. Nogue’s, C. Leighton and Ivan K. Schuller, Phys. Rev. B 61 (2000-II) 1315.
[8]. X. Ke, M. S. Rzchowski, L. J. Belenky, and C. B. Eom, Appl. Phys. Lett. 84, (2004) 5458
[9]. Journal of Applied Physics 106, 054303 (2009);
[10]. H.-J. Kim, J.-H. Park, and E. Vescovo PhysRevB.61.15288
[11]. P.J. van der Zaag, Y. Ijiri, J.A. Borchers, L.F. Feiner, R.M. Wolf, J.M. Gaines, R.W. Erwin, M.A. Verheijen, Phys. Rev. Lett. 84 (2000) 6102.
[12]. J.A. Borchers, R.W. Erwin, S.D. Berry, D.M. Lind, J.F. Ankner, E. Lochner, K.A. Shaw, D. Hilton, Phys. Rev. B 51 (1995) 8276.
[13]. I.P. Krug, F.U. Hillebrecht, H. Gomonaj, M.W. Haverkort, A. Tanaka, L.H. Tjeng, C.M. Schneider, Europhys. Lett. 81 (2008) 17005.
[14]. A.R. Ball, A.J.G. Leenaers, P.J. van der Zaag, K.A. Shaw, B. Singer, D.M. Lind, H. Fredrikze, M.T. Rekveldt, Appl. Phys. Lett. 69 (1996) 583.
[15]. C. Gatel, E. Snoeck, V. Serin, A.R. Fert, Eur. Phys. J B 45 (2005) 157.
[16]. W. H. Meiklejohn, C. P. Bean, Phys. Rev. 102 (1956) 1413
[17]. T. J. Moran, J. M. Gallego, I. K. Schuller, J. Appl. Phys. 78 (1995) 1887.
[18]. PHYSICAL REVIEW B 71, 134406 2005
[19]. J. Appl. Phys., Vol. 93, No. 10, Parts 2 & 3, 15 May 2003
[20]. PHYSICAL REVIEW B 68, 214420 2003
[21]. PHYSICAL REVIEW B 72, 212401 2005
[22]. PHYSICAL REVIEW B 84, 092404 (2011)
[23]. Surface Science 609 (2013) 161–166
[24]. J. AM. CHEM. SOC. 2010, 132, 12480–12486
[25]. J. Phys. Chem. C 2013, 117, 19672−19683
[26]. H. A. Kramers, Physica 1, 182 (1934)
[27]. P. W. Anderson, Phys. Rev. 79, 350 (1950)
[28]. 中科院物理所 磁学国家重点实验室 maglab.iphy.ac.cn/C磁性物理的基础
[29]. Exchange Mechanisms Erik Koch Computational Materials Science German Research School for Simulation Sciences
[30]. www.researchgate.net
[31]. E.W. Gorter, Philips Res. Rep. 9 (1954) 295.
[32]. SCIENTIFIC REPORTS | 2 : 759 | DOI: 10.1038/srep00759
[33]. http://www.globalsino.com/EM/
[34]. Advanced Computing in Electron Microscopy Second Edition
[35]. MULTISLICE SIMULATION OF TEM IMAGES by Graham D. Reid
[36]. MacTempas User Manual
[37]P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964) B864.
[38]W. Kohn and L. J. Sham, Phys. Rev. 140 (1965) A1133.
[39]J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
[40]The Art of Molecular Dynamics Simulation, D. C. Rapaport.
[41]X. Zhao, D. Ceresoli, and D. Vanderbilt, Phys. Rev. B 71 (2005) 085107.
[42]D. R. Hamann, M. Schluter, and C. Chiang, Phy. Rev. Lett. 43 (1979) 1494.
[43]M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Reviews of Modern Physics, Vol. 64, No. 4, 1045 (1992).
[44]F. S. Ham and B. Segall, Phys. Rev. 124 (1961) 1786.
[45]M. Methfessel, and M. Van Schilfgaarde, Phys. Rev. B, 48 (1993) 4937.
[46]G. A. Sai-Halasz, L. Esaki, and W. A. Harrison, Phys. Rev. B 18 (1978) 2812.
[47]Charles Kittel, Introduction to Solid State Physics, John Wiley and Sons (2005).
[48]The guide of VASP, can be retrieved from:http://cms.mpi.univie.ac.at/VASP/ , written by Georg Kresse and Jürgen Furthmüller.
[49]G. Kresse and J. Furthmuller, Phys. Rev. B 54 (1996) 11169.
[50]D. Vanderbilt, Phys. Rev. B, 41 (1990) 7892.
[51]C. G. Bmyden, Math. Comput 19 (155) 577.
[52]P. Pulay, Chem. Phys. Lett. 73 (1980) 393
[53]D. D. Johnson, Phys. Rev. B38, 12 (1988) 87.
[54]In general the Kohn-Sham energy functional for an ultrasoft (US) Vanderbilt pseudopotential (PP) can be written as [25-271].
[55]N. W. Ashcroft and N. D. Mermin, Solid state physics, Saunders College Publishing (1976).
[56]M. P. Marder, Condensed matter physics, John Wiley and Sons (2000).
[57]江進福, 物理雙月刊, 廿三卷五期, P549-553 (2001)
[58]L. H. Thomas, "The calculation of atomic fields". Mathematical Proceedings of the Cambridge Philosophical Society 23 (1927) 542.
[59]E. Fermi, "Un Metodo Statistico per la Determinazione di alcune Prioprietà dell'Atomo". Rend. Accad. Naz. Lincei6 (1927) 602.
[60]E. Wigner, Transactions of the Faraday Society, 34 (1938) 0678.
[61]D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45 (1980) 566.
[62]S. H. Vosko, J. P. Perdew, and A. H. Macdonald, Phy. Rev. Lett. 35 (1975) 1725.
[63]A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52 (1995) R5467.
[64]G. Onida, L. Reining, and A. Rubio, Review of Modern Physics, vol. 74 (2002) 601
[65]B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley Pub. Co. (1972).
[66]V. A. Krutov and L. N. Savushkin, J. Phys. A: Math. Nucl.Gen. 6 (1973) 93.
[67]. Nature Nanotechnology 1, 53 - 59 (2006)
[68]. 物理雙月刊24卷5期(2002)
[69]. J. Am. Chem. Soc. 1999, 121, 11595-11596
[70]. "Chemistry of Specific, Selective, and Sensitive Reactions," Academic Press, Inc., 1949, pp. 262-266
[71]. Anal. Chem., 1968, 40 (6), pp 948–951
[72]. Nature Materials 3, 891 - 895 (2004)
[73]. Chem. Mater., Vol. 16, No. 14, (2004)
[74].The NCEM Image Processing Custom Function Plug-Ins for Digital Micrograph
Roar Kilaas, Sidnei Paciornik and John Bonevich User Manual
[75]. Ultramicroscopy 62 (I 996) 43-52
[76]. R. Kilaas, (J. Microscopy, 190, (1998), 45-51
[77]. BY J. M. COWLEY AND A. F. MOODIE Acta Cryst. (1957). 10, 609
[78].PhysRevLett.4.412
[79].R.L. Mössbauer, Z. Physik, 1958, 151, 124.2
[80].U. Gonser (ed), Mössbauer Spectroscopy, Topics in Applied Physics, Vol
5, Springer, Berlin-Heidelberg-New York, 1975
[81]. H. Fauenfelder, The Mössbauer Effect, Benjamin, New York, 1962
[82]. G.K. Wertheim, Mössbauer Effect: Principles and Applications, Academic Press, New York, 1964
[83].P.Gutlich, University of Mainz , Lecture Notes Mössbauer Spectroscopy
[84]. Breit, G.; Wigner, E. (1936). "Capture of Slow Neutrons". Physical Review 49 (7): 519
[85]. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, Second Edition Author(s): Dr. R. M. Cornell, Prof. em. Dr. Dr. h.c. U. Schwertmann
[86]. W.M. Visscher, Ann. Phys. 9, 194, 1960