簡易檢索 / 詳目顯示

研究生: 周伯橋
Chou, Po Chiao
論文名稱: 應用於高碼率準循環低密度奇偶檢查碼使用降低錯誤平層技術之有效的分層解碼器架構
An Efficient Layered Decoder Architecture with Error-Floor Lowering Technique for High-Rate QC-LDPC Codes
指導教授: 翁詠祿
Ueng, Yeong Luh
口試委員: 王忠炫
Wang, Chung Hsuan
唐宏驊
Tang, Hong Hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 47
中文關鍵詞: 錯誤更正碼錯誤平層
外文關鍵詞: Error floor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在LDPC碼解碼時,有時會發生錯誤率並沒有隨著信噪比(Signal Noise Ratio)增加而明顯下降的情況,此種狀況稱之為錯誤平層現象(Error floor)。此現象主要是由LDPC碼中的特殊結構,陷阱組合(trapping sets)\cite{Trap-Set}所造成的。對於儲存系統來說,高信噪比部分之性能非常重要。因此,如何降低錯誤平層便是一個很重要的課題。

    目前已有許多方法透過分析陷阱組合資訊,有效的降低錯誤平層。但陷阱組合的分析需要很長的時間,且儲存陷阱組合資訊所需的硬體資源也是一個不可忽視的問題。本論文將透過現場可編輯邏輯閘陣列平台(Field-Programmable Gate Array,FPGA)觀察錯誤平層區域的錯誤型樣(Error pattern),探討在工程上,如何快速且有效率的降低錯誤平層,並在硬體上能夠簡單、低複雜度的實現之演算法,並以FPGA進行驗證。

    藉由分析錯誤型樣,我們可以取得對錯誤平層有重大影響的變數節點(variable node)區塊,我們稱之為有害區塊(harmful block),如此便可省去進行陷阱組合分析的大量時間。此外,有害區塊較陷阱組合資訊所需儲存量來的小,因此在硬體實作上更加適合。根據FPGA之驗證結果,本論文提出之降低錯誤平層技術能夠有效的降低LDPC碼的錯誤平層。使其下降 2 ~ 2.5 個數量級。


    Extremely low error rate is required for storage systems.
    Trapping sets are regarded as the major cause of the error floor of low-density parity-check (LDPC) codes.

    In this work, a practical method is constructed for lowering the error floor of low-density parity-check (LDPC) codes.
    At first, an hardware simulator is implemented using FPGA (Field-Programmable Gate Array),
    and a large numbr of error samples can be collected along with the corresponding noise patterns.
    Based on the correlations between the noise patterns and code structures,
    the received bits can be cataloged and a table of {\it harmful blocks} is listed.
    When the error bits in the received sequence cannot be totally corrected using the formal decoding process,
    the LLR values of certain bits are adjusted,
    and a modified decoding process is excuted.
    The selections of the adjusting bits are based on the harmful block table.

    The total number of harmful blocks is equal to that of the block columns.
    The storage for harmful blocks can be significantly reduced.
    After sufficient error samples and noise patterns are collected,
    it can be observed that only a small part of the harmful blocks is enough to achieve a satisfactory
    error floor lowering capability,
    and the storage requirement is small.
    The proposed scheme has been evaluated with the assistance of the FPGA simulator,
    and the error rate can be reduced to less than 1\% of the formal decoding process.

    1 簡介 1 2 低密度奇偶檢查碼之回顧 3 3 高吞吐量低密度奇偶檢查解碼器 8 4 低密度奇偶檢查碼降低錯誤平層的技術 18 5 現場可編輯邏輯閘陣列平台的建立 34 6 結論 43 7 參考文獻 44

    [1] D. J. C. MacKay and R. M. Neal,Near Shannon limit performance
    of low density parity check codes,Electron. Lett., vol. 32, no. 18, pp.
    16451646, 1996.
    [2] IEEE Standard for Information technology Local and metropolitan
    area networks Speci c requirements Part 11: Wireless LAN Medium
    Access Control(MAC)and Physical Layer (PHY) Speci cations Amend-
    ment 5: Enhancements for Higher Throughput.IEEE-SA,2009.
    [3] IEEE Standard for Air Interface for Broadband Wireless Access Sys-
    tems.IEEE-SA,2012.
    [4] J. Pearl, Probabilistic reasoning in intelligent systems: networks of
    plausible inference. Morgan Kaufmann, 1988.
    [5] Tom Richardson Error Floors of LDPC Codes, in proc. 41st Aller-
    ton Conf. on Communications, Control, and Computing, Allerton House,
    Monticello,IL ,Oct. 2003.
    [6] Wes Patterson,Field Programmable Gate Arrays get enough speed and
    density for computer applications,XILINX INC. San Jose, CA, 1990.
    [7] R. G. Gallager, Low-density parity-check codes,IRE Trans. Inf. The-
    ory, vol. 8,no. 1, pp. 2128, 1962.
    [8] R. M. Tanner,A recursive approach to low-complexity codes, IEEE
    Trans. Inf. Theory, vol. IT-27, no. 5, pp. 533-547, Sep. 1981.
    [9] Jun Xu, Lei Chen, Ivana Djurdjevic, Shu Lin and Khaled Abdel-
    Gha ar,Construction of Regular and Irregular LDPC Codes: Geometry
    Decomposition and Masking,IEEE Trans. Inf. Theory, vol. 53, NO. 1,
    JANUARY 2007.
    [10] Z. Li, L. Chen, L. Zeng, S. Lin, and W. H. Fong,Ecient encoding of
    quasi-cyclic low-density parity-check codes,IEEE Trans. Commun., vol.
    54, no. 1, pp. 7181, 2006.
    [11] M. M. Mansour and N. R. Shanbhag,Turbo decoder architectures for
    low density parity-check codes,in IEEE Global Telecommunications
    Conference, 2002, vol. 2, pp. 13831388.
    [12] Jyun-Kai Hu, A Reduced-Complexity Layered Decoder Architecture for
    High-Rate QC-LDPC Codes,in NTHU Master Thesis, 2013.
    [13] Ying-Chi Hou, Implementation of Flexible QC-LDPC codec on
    FPGA,in NTHU Master Thesis, 2015.
    45
    [14] Cavus, Enver, and Babak Daneshrad. A performance improvement
    and error
    oor avoidance technique for belief propagation decoding of
    LDPC codes.Personal, Indoor and Mobile Radio Communications,
    2005. PIMRC 2005. IEEE 16th International Symposium on. Vol. 4. IEEE,
    2005.
    [15] Chieh-Shen Hsieh, A Hardware-friendly Error-foor Lowering Technique
    for High-rate QC-LDPC Codes,in NTHU Master Thesis, 2014.
    [16] Angarita, Fabin, et al. Reduced-Complexity Min-Sum Algorithm for
    Decoding LDPC Codes With Low Error-Floor. Circuits and Systems I:
    Regular Papers, IEEE Transactions on 61.7 (2014): 2150-2158.
    [17] Zhang, Zhengya, et al.Lowering LDPC error
    oors by postprocessing.
    Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008.
    IEEE. IEEE, 2008.
    [18] Kang, Jingyu, et al. An iterative decoding algorithm with backtrack-
    ing to lower the error-
    oors of LDPC codes. Communications, IEEE
    Transactions on 59.1 (2011): 64-73.
    [19] Cavus, Enver, and Babak Daneshrad. A performance improvement
    and error
    oor avoidance technique for belief propagation decoding of
    LDPC codes. Personal, Indoor and Mobile Radio Communications,
    2005. PIMRC 2005. IEEE 16th International Symposium on. Vol. 4. IEEE,
    2005.
    [20] William Ryan and Shu Lin, Constructions of LDPC Codes Based on
    Finite Fields,Channel Codes: Classical and Modern, Chapter 11, pp.
    484-495.
    [21] Richard P. Brent, Paul Zimmermann, Algorithms for Finding Almost
    Irreducible and Almost Primitive Trinomials,Mathematics Subject Clas-
    si cation,1991.
    [22] Dong-U Lee, Wayne Luk, A Hardware Gaussian Noise Generator Using
    the Box-Muller Method and Its Error Analysis,IEEE Trans. Computer.
    Theory, vol. 55, NO. 6, JUNE 2006
    [23] Xilinx,Support-chip document & answers,Xilinx Inc, 2015.
    [24] Xilinx,ISE Project Navigator,Release version 14.7,Appication ver-
    sion P.28xd,1995-2012
    [25] Youngjoo Lee, Jaehwan Jung and In-Cheol Park, Energy-scalable 4KB
    LDPC Decoding Architecture for NAND-
    ash-based Storage System
    [26] Kin-Chu Ho, Chih-Lung Chen, and Hsie-Chia Chang, A 520k (18 900,
    17 010) Array Dispersion LDPC Decoder Architectures for NAND Flash
    Memory, IEEE Trains. VLSI., 2015

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE