簡易檢索 / 詳目顯示

研究生: 吳靜宜
論文名稱: 水相中銅與胺基酸錯合物之光分解產物研究:氨的定量與分析
Determination of Ammonia from the Photolysis of Cu(II)-Amino Acid Complexes in Aqueous Solution
指導教授: 吳劍侯
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 68
中文關鍵詞: 銨離子吹氣捕捉法離子層析銅錯合物胺基酸
外文關鍵詞: ammonium, purge-and-trap method, Ion Chromatography, copper complex, amino acid
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是建立一個簡單吹氣捕捉的前處理系統,並結合離子層析儀來偵測在高濃度鈉離子干擾下微量的銨離子,並將這個前處理系統應用於偵測海水及銅/胺基酸錯合物的光產物分析上。由於離子層析法是目前相當廣泛被用來量測銨離子的一種分析方法,但是要利用此方法來量測在高濃度鈉離子干擾之下微量的銨離子並不容易,所以本論文先利用銨離子與其它陽離子不同的基本性質(即是氨在水中的分佈隨著pH值變化的關係),先將銨離子從複雜的基質干擾中分離出來,然後再利用離子層析儀進行定量。這個前處理系統不但可以準確地定量銨離子,還可以達到樣品前濃縮及保護分析管柱…等優點。
    銅/胺基酸錯合物在經由波長313 nm的照射下所產生的一價銅與銨離子的反應速率比值會隨著胺基酸的不同而不同,推測是與胺基酸的側鏈結構不同有關係,其反應速率比值約為2 ~ 4。


    The study was mainly to establish a simple purge-and-trap pretreatment combining with Ion Chromatography (IC) system for quantitative analysis of trace ammonium ion in the presence of high concentration of sodium ion. The new method has been applied for the analysis of ammonia from seawaters and the photolysis of copper(II) – amino acid complexes. Although IC is a quick and effective technique utilized to determine inorganic cations and ammonium, it is extremely difficult to analyze samples of very dissimilar concentration ratios of sodium-to-ammonium, such as seawater. Different from other cations with only one species form, ammonium could be deprotonated to ammonia under high pH. Then ammonia exchange between water and gas could be occurred by purging and trapping. The collected ammonium is further analyzed by IC. The pretreatment system is not only a preconcentration technique but also is highly effective in removing matrix interferences. The present approach provides low limits of detection and keeps column performance longer.
    The formation rate ratios of copper(I) to ammonium ion in aqueous solution without oxygen under monochromatic radiation at 313 nm were around 2 to 4, probably relating to the different side chains of amino acids as the ligands.

    目錄 中文摘要………………………………………………………………...………………I 英文摘要………………………………………………………………………………..II 誌謝…………………………………………………………………………………….III 目錄……………………………………………………………………………………IV 圖目錄…………………………………………………………………………………VI 表目錄………………………………………………………………………………..VIII 第一章 前言…………………………………………………………………………..1 1-1 簡介………………………………………………………………………………1 1-2 文獻回顧…………………………………………………………………………1 1-2-1 分析方法…………...……………………………………………………1 1-2-1-1 氨的基本物理化學特性……………………………………1 1-2-1-2 氨的分析方法……………………………………………...…5 1-2-1-3 離子層析法………………………………………………...10 1-2-1-4 捕捉氨氣的方法…………………………………………...12 1-2-2 銅與胺基酸錯合物的光化學反應…………………………………….13 1-2-2-1 銅的基本物理化學特性 ………………………………….13 1-2-2-2 反應模型假設………………………………………………15 1-3 研究目的與動機………………………………………………………………..19 第二章 實驗部分…………………………….……………………………………...20 2-1 儀器設備………………………………………………………………………..20 2-1-1 離子層析儀…………………………………………………………….20 2-1-2 光照系統……………………………………………………………….21 2-1-3 其它儀器及器材……………………………………………………….23 2-2 實驗藥品………………………………………………………………………..23 2-2-1 分析方法用的藥品……………………………………………………23 2-2-2 光照產物分析時用的藥品…………………………………………..24 2-2-3 藥品配置……………………………………………………………..24 2-3 前處理系統的實驗流程及操作………………………………………………..25 2-4 利用此前處理系統來量測銅與胺基酸的光分解產物的實驗流程……...……26 2-5 量測光強度……………………………………………………………………...27 第三章 結果與討論………………………………..………………………………..29 3-1 前處理系統之參數探討………………………………………………………..29 3-1-1 純化氮氣……………………………………………………………….29 3-1-2 氫氧化鈉的探討……………………………………………………….30 3-1-3 氮氣流速的影響……………………………………………………….34 3-1-4 吹除時間……………………………………………………………….36 3-1-5 溫度的影響…………………………………………………………….38 3-1-6 基質添加的影響……………………………………………………….41 3-2 檢量線、偵測極限、再現性……………………………………………………...42 3-3 真實樣品……………………………………………………………………….46 3-4 本分析方法結論………………………………………………………………...48 3-5 用來偵測銅與胺基酸錯合物之光分解產物研究……………………………...49 第四章 結論與展望…………………………………………………………………53 參考文獻…………………………………………………………….……………..…..54 附錄一 銅/胺基酸錯合物在313 nm下光照分解之結果………...…………………59 附錄二 胺基酸的基本性質……...………………………………...…………………67 圖目錄 圖1-1. NH3(aq)與NH4+ 在水中的分佈隨pH值變化的關係……………..…………..4 圖1-2. 靛酚法反應示意圖………………………………………………..…………..5 圖1-3. 氨與OPA反應示意圖……………………………………………...…………6 圖1-4. 離子層析儀結構示意圖……………………………………………..………11 圖2-1. 離子層析儀示意圖…………………………………………………..………20 圖2-2. 光反應系統示意圖…………………………………………………..………22 圖2-3. 前處理系統示意圖…………………………………………………..………25 圖2-4. 偵測銅與胺基酸光分解產物-銨離子的實驗流程圖……………..………26 圖2-5. 鄰硝苯甲醛經由照光分解後變成鄰亞硝苯甲酸的反應示意圖……..……27 圖3-1. 高純氮中的不純氨氣溶於去離子水中的含量隨著吹除時間增加而增加……………………………………..………………………………………29 圖3-2. 探討氫氧化鈉所需的濃度……………………..……………………………30 圖3-3. 探討氫氧化鈉克數與檢量線的關係………………………………………..32 圖3-4. 氫氧化鈉的克數與檢量線斜率之間的關係………………………..………33 圖3-5. 探討流速與檢量線的關係……......................................................................35 圖3-6. 流速與檢量線斜率之間的關係…………..…………………………………36 圖3-7. 探討吹除時間與檢量線的關係………………………………………….….37 圖3-8. 吹除時間與檢量線斜率之間的關係……………..…………………………38 圖3-9. 探討溫度與檢量線的關係…………..………………………………………39 圖3-10. 溫度與檢量線斜率之間的關係……………………..……………………....40 圖3-11. 檢量線(n=3)……………………………………..………………………....42 圖3-12. 檢量線的層析圖…………………………………..………………………....43 圖3-13. 不同天的檢量線比較圖…………………………………..………………....43 圖3-14. 比較經過前處理與否的差異圖……………………..……..………………..44 圖3-15. 真實樣品經前處理之後的層析圖…………………………………………..46 圖3-16. 利用MINTEQ所計算出來的物種分佈圖…………………………….........49 圖3-17. α-Alanine與二價銅的錯合物經由光分解後產生銨離子與一價銅……….50 圖3-18. α-Alanine與二價銅的錯合物經由光分解後產生銨離子與一價銅……….50 圖3-19. α-Alanine與二價銅的錯合物經由光分解後產生銨離子與一價銅……….51 圖5-1. 利用MINTEQ所計算出來不同的銅與胺基酸錯合物物種分佈圖….........59 圖5-2. Asparagine系統在不同pH值下所得的光照結果…………………….........61 圖5-3. Aspartic acid 系統在不同pH值下所得的光照結果………………………62 圖5-4. Glutamine系統在不同pH值下所得的光照結果…………………………..63 圖5-5. Glutamic acid系統在不同pH值下所得的光照結果……………………….64 圖5-6. Lysine系統在不同pH值下所得的光照結果………………………............65 圖5-7. Threonine系統在不同pH值下所得的光照結果…………….......................66 表目錄 表1-1. 氨的基本性質……………………………………………………...………..2 表1-2. 氨溶於水的亨利常數(mole l-1(gas) mole l-1(liquid) l ×104)………………3 表1-3. 不同溫度下氨的平衡常數(Kb)……………………………………………3 表1-4. 偵測水相中銨離子不同分析方法的比較………………………………….8 表1-5. 利用離子層析法偵測不同樣品中銨離子的相關文獻…………………….9 表1-6. 使用不同的吸附液相來吸附不同的微量氣體分析物…………………12 表1-7. 銅的基本性質……………………………………………………………13 表1-8. 生成物種之熱力學常數表………………………………………………17 表2-1. 離子層析儀儀器設定條件………………………………………………21 表2-2. 光反應系統的操作條件…………………………………………………22 表2-3. 用來偵測光強度的HPLC-UV系統的實驗參數…………………………28 表3-1. 基質干擾的影響…………………………………………...………………41 表3-2. 最佳實驗參數……………………………………………...………………42 表3-3. 本分析方法的準確度……………………………………...………………45 表3-4. 本分析方法的再現性……………………………………...………………45 表3-5. 真實樣品經前處理之後所測得的濃度…………………...………………46 表3-6. 比較不同方法所量測海水中的含氨量…………………...………………47 表3-7. α-Alanine 與銅的錯合物在不同pH值下光分解的Cu(I)/NH4+比值……51 表3-8. 銅與不同的胺基酸錯合物在不同pH值下光分解的Cu(I)/NH4+比值…..52 表6-1. 胺基酸的基本性質…………………………………………………….......67

    參考文獻
    Aminot, A.; Kérouel, R.; Birot, D., A Flow Injection-Fluorometric Method for the determination of ammonium in fresh and saline waters with a view to in situ analyses. Wat. Res. 2001, 35, 1777-1785.
    Cofer III, W. R.; Collins, V. G.; Talbot, R. W., Improved Aqueous Scrubber for Collection of Soluble Atmospheric Trace Gases. Environ. Sci. Technol. 1985, 19, 557-560.
    Faust, B. C., Experimental Determination of Molar Absorptivities and Quantum Yields for Individual Complexes of a Labile Metal in Dilute Solution. Environ. Sci. Technol. 1996, 30, 1919-1922.
    Folsom, B. R.; Popescu, N. A.; Wood, J. M., Comparative Study of Aluminum and Copper Transport and Toxicity in an Acid-Tolerant Freshwater Green Alga. Environ. Sci. Technol. 1986, 20, 616-620.
    Gardner, W. S.; John, P. A. S., High-Performance Liquid Chromatogrphic Method to Determine Ammonium Ion and Primary Amines in Seawater. Anal. Chem. 1991, 63, 537-540.
    Gaucheron, F.; Graet, Y. L., Determination of Ammonium in Milk and Dairy Products by Ion Chromatography. J. Chromatogr. A 2000, 893, 133-142.
    Genfa, Z.; Dasgupta, P. K., Dong, S., Measurement of Atmospheric Ammonia. Environ. Sci. Technol. 1989, 23, 1467-1474.
    Genfa, Z.; Dasgupta, P. K., Fluorometric Measurement of Aqueous Ammonium Ion in a Flow Injection System. Anal. Chem. 1989, 61, 408-412.
    Genfa, Z.; Dasgupta, P. K., A Continuous Film-Recirculable Drop Gas-Liquid Equilibration Device. Measurement of Trace Gaseous Ammonia. Anal. Chem. 2000, 72, 3165-3170.
    Gilbert, T. R.; Clay, A. M., Determination of Ammonia in Aquaria and in Sea Water Using the Ammonia Electrode Anal. Chem. 1973, 45, 1757-1759.
    Goyal, S. S.; Rains, D. W.; Huffaker, R. C., Determination of Ammonium Ion by Fluorometry or Spectrophotometry after On-Line Derivatization with o-Phthalaldehyde Anal. Chem. 1988, 60, 175-179.
    Harbin, A.-M.; Berg, C. M. G. v. d., Determination of Ammonia in Seawater Using Catalytic Cathodic Stripping Voltammetry. Anal. Chem. 1993, 65, 3411-3416.
    Hsu, C. S., Experimental Determination of Copper(I) quantum yields for Copper(II)-Amino acid complexes In Aqueous solution. Thesis for the master degree of Department of Atomic Science, National Tsing Hua University, Taiwan, R.O.C. 2003.
    Huang, Y.; Mou, S.; Riviello, J. M., Determination of Ammonium in Seawater by Column-Switching Ion Chromatography. J. Chromatogr. A 2000, 868, 209–216.
    Ibusuki, T.; Aneja, V. P., Mass Transfer of NH3 into Water at Environmental Concentrations. Chem. Engng. Sci. 1984, 39, 1143-1155.
    Jarvis, M.; Jackson, A.; Tyler, P.; Hulteen, J. C., Ammonium Extraction Method for Ion Chromatographic Measurements of Disc Drive Components. J. Chromatogr. A 2001, 920, 271–274.
    Keith, L.; Telliard, W., ES&T Special Report: Priority pollutants: I-a perspective view. Environ. Sci. Technol. 1979, 13, 416-423.
    Komazaki, Y.; Hamada, Y.; Hashimoto, S.; Fujita, T.; Tanaka S., Development of an Automated, Simultaneous and Continuous Measurement System by Using a Diffusion Scrubber Coupled to Ion Chromatography for Monitoring Trace Acidic and Basic Gases (HCl, HNO3, SO2 and NH3) in the Atmosphere. Analyst 1999, 124, 1151-1157.
    Lau, K. T.; Edwards, S.; Diamond, D., Solid-state ammonia sensor based on Berthelot’s reaction. Sens. Actuators. B 2004, 98, 12-17.
    Lawrence, J. E.; Koutrakls, P., Measurement of Atmospheric Formic and Acetic Acids: Methods Evaluation and Results from Field Studies. Environ. Sci. Technol. 1994, 28, 957-964.
    Lide, D. R., CRC handbook of chemistry and physics, 83rd Ed., CRC Press, Cleveland, Ohio 2002.
    Lue, S. J.; Huang, C., Applications of Ion Chromatography in the Semiconductor Industry II. Determination of Basic Airborne Contaminants in a Cleanroom. J. Chromatogr. A 1999, 850, 283–287.
    Moffett, J. W.; Zika, R. G., Reaction Kinetics of Hydrogen Peroxide with Copper and Iron in Seawater. Environ. Sci. Technol. 1987, 21, 804-810.
    Mori, M.; Tanaka, K.; Helaleh, M. I. H.; Xu, Q.; Ikedo, M.; Ogura, Y.; Sato, S.; Hu, W.; Hasebe, K., Selective determination of ammonium ions by high-speed ion-exclusion chromatography on a weakly basic anion-exchange resin column. J. Chromatogr. A 2003, 997, 191-197.
    Pai, S.-C.; Tsau, Y.-J.; Yang, T.-I., pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method. Anal. Chim. Acta. 2001, 434, 209–216.
    Perrino, C.; Gheraedi, M., Optimization of the Coating Layer for the Measurement of Ammonia by Diffusion Denuders. Atmos. Environ. 1999, 33, 4579-4587.
    Petersen, R., Influence of Copper and Zinc on the Growth of a Freshwater Alga, Scenedesmus quadricauda : The Significance of Chemical Speciation. Environ. Sci. Technol. 1982, 16, 443-447.
    Pohl, C.; Rey, M.; Jensen, D.; Kerth, J., Determination of Sodium and Ammonium Ions in Disproportionate Concentration Ratios by Ion Chromatography. J. Chromatogr. A 1999, 850, 239-245.
    Rey, M. A., High-Capacity Cation-Exchange Column for Enhanced Resolution of Adjacent Peaks of Cations in Ion Chromatography. J. Chromatogr. A 2001, 920, 61-68.
    Rey, M. A.; Pohl, C. A., Novel Cation- Exchange Stationary Phase for the Separation of Amines and of Six Common Inorganic Cations. J. Chromatogr. A 1996, 739, 87-97.
    Rey, M. A.; Pohl, C. A.; Jagodzinski, J. J.; Kaiser, E. Q.; Riviello, J. M., A New Approach to Dealing with High-to-Low Concentration Ratios of Sodium and Ammonium Ions in Ion Chromatography. J. Chromatogr. A 1998, 804, 201-209.
    Rey, M. A.; Riviello, J. M.; Pohl, C. A., Column Switching for Difficult Cation Separations. J. Chromatogr. A 1997, 789, 149-155.
    Rorabacher, D. B., Electron Transfer by Copper Centers. Chem. Rev. 2004, 104, 651-697.
    Simon, P. K.; Dasgupta, P. K., Wet Effluent Denuder Coupled Liquid / Ion Chromatography Systems: Annular and Parallel Plate Denuders. Anal. Chem. 1993, 65, 1134-1139.
    Staden, J. F. v.; Taljaard, R. E., Determination of Ammonia in Water and Effluent Streams with the Indophenol Blue Method Using Sequential Injection Analysis. Anal. Chim. Acta. 1997, 344, 281-289.
    Tian, K.; Dasgupta, P. K.; Anderson, T. A., Determination of Trace Perchlorate in High-Salinity Water Samples by Ion Chromatography with On-Line Preconcentration and Preelution. Anal. Chem. 2003, 75, 701-706.
    Tsai, C.-J.; Huang, C.-H.; Wang, S.-H.; Shih, T.-S., Collection Efficiency and Capacity of Three Samplers for Acidic and Bsaic Gases. Environ. Sci. Technol. 2001, 35, 2572-2575.
    Wang, P. Y., Determination of Ammonium Ion and Amines in the Photolysis of Cu(II)-Amino Acid Complexes in Aqueous Solution. Thesis for the master degree of Department of Atomic Science, National Tsing Hua University, Taiwan, R.O.C. 2004.
    Willett, K. L.; Hites, R. A., Chemical actinometry: using o-nitrobenzaldehyde to measure light intensity in photochemical experiments. J. Chem. Educ. 2000, 77, 900-902.
    Yu, B.-S.; Nie, L.-H.; Yao, S.-Z., Ion Chromatographic Study of Sodium, Potassium and Ammonium in Human Body Fluids with Bulk Acoustic Wave Detection. J. Chromatogr. B 1997, 693, 43–49.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE