簡易檢索 / 詳目顯示

研究生: 高士超
Kao Shih Chao
論文名稱: 有限投影資訊下提昇X射線影像重建品質的方法
The Method Improving the X-Ray Image Reconstruction Quality with Limited Projection Information
指導教授: 蕭德瑛
Dr. Dein Shaw
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 79
中文關鍵詞: 影像重建斷層掃描二值夾擊
外文關鍵詞: Image Reconstruction, Tomography, Binary Steering
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在於建立一套運用於PCB檢測的X射線非破壞性檢測影像演算法。X射線非破壞性檢測已成為瑕疵檢測中重要的一環,然而單獨的X射線投影影像僅紀錄了投影路徑中的資訊,並無法正確判斷內藏的瑕疵,所以必須建立一套影像重建系統重建PCB立體圖像。本研究嘗試建立線型感測器的平面式斷層掃描系統(Planar Computer Tomography,PCT)系統之影像重建方法,以近似平行光束的投影為影像成像基礎,利用代數重建法(Algebraic Reconstruction Technique,ART)從數個不同角度的投影重建出PCB截面影像。然而PCT投影角度上的限制會讓的重建影像品質大幅的降低,本研究中結合了二值夾擊的方法,利用二值夾擊輔助代數重建法進行修正,避免影像收斂於局部最佳解,以期得到更好的影像品質;同時嘗試簡化疊代演算的計算量以提高影像重建速度。最後,並討論對機台定位誤差對重建三維影像之影響。


    The purpose of this study is to set up a X-ray image reconstruction algorism to inspect the defect in a Printed Circuit Board(PCB). Nowadays X-ray Nondestructive Testing(NDT)has played an important role in defect inspection but the X-ray image contains all the information the rays passed by, therefore, it is hard to inspect the inner defect of PCB correctly. The correct inspect is rely on an image reconstruction system. This study uses the Algebraic Reconstruction Technique(ART)to reconstruct the vertical section image from the Planar Computer Tomography(PCT)system of PCB of several different project angles. The X-ray is assumed to be parallel beam. The limited angle of projection in PCT reduces the image reconstruction quality. To improve the quality of reconstructed image, a method combines the binary steering mechanism with ART to get the correct convergence and avoiding the local optimum solution of ART. Furthermore, the computational algorism to increase the reconstructed speed and discussing the influence between the image and the position error in machine are discussed.

    誌謝 摘要 Abstract 圖目錄 第一章 緒論 1.1 前言 1.2 文獻回顧 1.3 研究架構 第二章 理論介紹 2.1 X射線原理 2.2 X射線投影方式 2.3 電腦斷層掃描的發展 2.4 CT的數學理論基礎 2.4.1 拉登轉換 2.4.2 傅立葉切片理論 2.5 CT影像重建法 2.5.1 傅立葉轉換重建法 2.5.2 反投影重建法 2.5.3 代數重建法 2.5.4 同步疊代重建法 2.5.5 同步代數重建法 2.5.6 乘法型代數重建法 2.6 二值夾擊疊帶演算 第三章 重建方法與權係數矩陣的選擇 3.1 重建方法的選擇 3.2 硬體架構 3.3 不同權係數的建立方式 3.3.1 二值化權係數矩陣 3.3.2 三值化權係數矩陣 3.3.3 掃描路徑長作權係數矩陣 3.3.4 掃描面積比作權係數矩陣 3.4 有限投影角度下權係數建立方式與影像的關係 3.5 結論 第四章 提昇影像品質方法 4.1 投影數與影像品質的關係 4.2 結合二值夾擊疊代演算 4.3 雜訊對影像重建品質的影響 4.4 混合式代數重建法 4.5 結論 第五章 加快重建速度的方法與誤差討論 5.1 加快重建速度的方法 5.1.1 基版省略法 5.1.2 分塊疊代法 5.2 誤差討論 5.2.1 垂直方向誤差 5.2.2 水平方向誤差 5.3 結論 第六章 結論與未來研究 6.1 結論 6.2 未來研究 參考文獻

    [1] 江國寧, 微電子係統封裝基礎理論與應用技術: 滄海書局, 2006.
    [2] "X rays expose hidden connections," presented at Test and Measurement Europe, 2000.
    [3] S.M.Rooks, B.Benhabib, and K.C.Smith, "Development of an Inspection Process for Ball-Grid-Array Technology Using Scanned-Beam X-Ray Laminography," presented at IEEE Transmitions on Components, Packaging, and Manufacturing Technology, 1995.
    [4] "Charting a DFT Course for Limited-access Boards," Agilent Technologies, 2002.
    [5] J. Radon, "U¨ ber die Bestimmung von Funktionen durch ihre Integralwerte la¨ngs gewisser Manningfaltigkeiten," 1917.
    [6] A. M. Cormack, "Representation of a Function by Its Line Integrals, with Some Radiological Applications," Journal of Applied Physics, vol. 34, pp. 2722-2727, 1963.
    [7] C. Neubauer, S. Schropfer, and R. Hanke, "X-ray inspection of solder joints by planar computer tomography (PCT)," 1994.
    [8] R. Gordon, R. Bender, and G. T. Herman, "Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography," Theoretical Biology vol. 29, pp. 471-481, 1970.
    [9] G. T. Herman and L. B. Meyer, "Algebraic reconstruction techniques can be made computationally efficient [positron emission tomography application]," Medical Imaging, IEEE Transactions on, vol. 12, pp. 600-609, 1993.
    [10] H. Guan and R. Gordon, "A projection access order for speedy convergence of ART (algebraic reconstruction technique): a multilevel scheme for computed tomography," Phys. Med. Biol, vol. 39, pp. 2005-2022, 1994.
    [11] H. M. Hudson and R. S. Larkin, "Accelerated image reconstruction using ordered subsets of projection data," Medical Imaging, IEEE Transactions on, vol. 13, pp. 601-609, 1994.
    [12] 張順利, "工業CT圖像的代數重建方法研究及應用," in 航空宇航製造工程: 西北工業大學, 2004.
    [13] 劉曉, "工業CT圖像重建算法的計算機模擬研究," in 粒子物理與原子物理: 四川大學, 2004.
    [14] C. Neubauer, "Intelligent X-ray inspection for quality control of solder joints," Components, Packaging, and Manufacturing Technology, Part C, IEEE Transactions on [see also Components, Hybrids, and Manufacturing Technology, IEEE Transactions on], vol. 20, pp. 111-120, 1997.
    [15] J. An, Y.-B. Cho, and D.-G. Gweon, "A new method for image separation of overlapped images from a two-layered printed circuit board (PCB)," Image Vis. Comput., vol. 15, pp. 861-866, 1997.
    [16] J. An, Y.-B. Cho, and D.-G. Gweon, "A new approach to translational laminographic method for PCB inspection," Circuit World, vol. 24, pp. 14-20, 1998.
    [17] 李國翔, "含BGA電路板之X光3D影像重建技術," in 動力機械工程學系, vol. 碩士: 清華大學, 2006.
    [18] C. L. Byrne, "Block-iterative methods for image reconstruction from projections," Image Processing, IEEE Transactions on, vol. 5, pp. 792-794, 1996.
    [19] 王小璞, "基於分塊疊代的快速代數重建算法研究," in 應用數學: 西安理工大學, 2001.
    [20] A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging: IEEE Press, 1988.
    [21] S.Kaczmarz, "Angenaherte auflosung von systemen linear gleichungen," Bull. Acad. Pol. Sci. Lett. A, vol. 6-8A, pp. 355-357, 1937.
    [22] 瞿中, 鄒永貴, 沈寬, 王玨, and 徐問之, "工業CT窄角扇束掃描下的代數疊代圖像重建算法研究," in 計算機研究與發展, vol. 42, 2005, pp. 1882-1888.
    [23] Y. Censor, P. P. B. Eggermont, and D. Gordon, "Strong underrelaxation in Kaczmarz's method for inconsistent systems," Numerische vol. 41, pp. 83-92, 1983.
    [24] P.Gilbert, "Iterative methods for the reconstruction of three dimensional objects from their projection," J. Theor. Biol., vol. 36, pp. 105-117, 1972.
    [25] A.H.Andersen and A.C.Kak, "Simultaneous algebraic reconstruction technique(SART):A superior implementation of the ART algorithm," Ultrason. Imaging, vol. 6, pp. 81-94, 1984.
    [26] G. T. Herman and A. Kuba, Discrete Tomography: Foundations, Algorithms and Applications 1999.
    [27] Y. Censor, "Binary steering in discrete tomography reconstruction with sequential and simultaneous iterative algorithms," Linear Algebra and its Applications vol. 339, pp. 111-124 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE