研究生: |
廖凰如 Liao, Huang-Ru |
---|---|
論文名稱: |
製備一維高規則性鉑-二氧化鈦奈米管陣列材料及光電化學水還原反應之應用研究 Fabrication of one dimensional highly ordered Pt/TiO2 nanotube arrays for photoelectrochemical water splitting |
指導教授: |
董瑞安
Doong, Ruey-An |
口試委員: |
孫毓璋
Sun, Yuh-Chang 張淑閔 Chang, Sue-Min |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 136 |
中文關鍵詞: | TiO2 奈米管陣列 、Pt奈米顆粒 、光電化學水還原反應 、蕭特基接觸 |
外文關鍵詞: | TiO2 nanotube arrays, Pt nanoparticles, photoelectrochemical water splitting, schottky contact |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用陽極氧化法製備一維高面相比TiO2奈米管陣列材料,並將Pt奈米顆粒均勻分散於TiO2奈米管陣列表面,解決TiO2本身之限制並進一步提升光電化學反應之效率與整體產氫量。在單純的TiO2奈米管陣列材料,針對陽極氧化時間和鍛燒溫度之參數條件進行TiO2奈米管陣列形貌、晶相和表面特性之探討,並利用光電化學行為推測影響因素進而得到最佳化之實驗參數。所得到面相比375 的TiO2奈米管陣列在光電化學反應下於-0.55 V vs. Ag/AgCl (相當於0 V vs. RHE)具有最大的光還原電流,從結果顯示本研究所製備的TiO2奈米管陣列材料擁有水還原特性。當Pt奈米顆粒修飾在TiO2奈米管陣列材料時,金屬與半導體的界面產生蕭特基接觸(Schottky contact),有利於電子由TiO2轉移至Pt奈米顆粒上而增加產氫的反應,隨著Pt添加的濃度上升,電子被捕捉的位置變多,施加-0.95V時的電流變化相對於無添加時增加至10.5倍(0.17 wt%),本研究中含有0.17 wt% Pt的Pt/TiO2奈米管陣列複合材料具有最佳的光電化學產氫反應。施加不同電壓方面,暗反應下施加-0.75 V vs. Ag/AgCl (-0.2 V vs. RHE)下開始發生產氫量顯示TNTAs及Pt/TNTAs相對於於Pt片,其產氫量是Pt片5.6倍和8.3倍,其代表本研究所製備的奈米材料對於產氫之可行性。在不同相對電極方面,在照光或暗反應下施加-0.95V vs. Ag/AgCl之電壓的電流顯示以Pt/TiO2奈米管陣列為相對電極的產氫量相對於Pt片增加,表示Pt/TiO2奈米管陣列可代替傳統的Pt片並有效提升產氫反應之速率。在長時間反應下,Pt/TiO2奈米管陣列複合材料維持光電流變化達到97 %,顯示本研究所製備的電極材料具有高穩定性。最後把電極材料置換至陽極,發現TiO2奈米管陣列材料具有高氧化特性,顯示本研究所製備的電極材料具有多功能性之用途,同時可應用於光陰極和光陽極,且有效使用光源得到高產氫量,在水裂解電池上具有相當大的優勢。
These studies represent Pt nanoparticle is well dispersed on one-dimensional high aspect ratio TiO2 nanotube arrays surface which is prepared by anodic process. Use Pt/TiO2 nanotube arrays as a photocathode and application in photoelectrochemical reaction for water reduction, to improve photoelectrocatalytic hydrogen generation. For the nature TiO2 nanotube arrays material, adjusting anodic time and calcination temperature to control morphology, crystal phase and surface characterization, and used photoelectrochemical performance to obtain optimal parameter. The optimal TiO2 nanotube arrays with aspect ratio 375 yielded a maximum photocurrent at -0.55 V vs. Ag/AgCl (0 V vs. RHE) in 0.5 M Na2SO4 solution under UV light, this results showed TiO2 nanotube arrays we prepared had a property of water reduction. Decoration of TiO2 nanotube arrays by Pt nanoparticles produced schottky contact on the interface between metal and semiconductor, this mechanism favor to electron transfer from TiO2 to Pt, and current variation on the 0.17 wt% Pt/TNTAs at -0.95 V vs. Ag/AgCl was 10.5 times higher than in TNTAs. In different counter electrode, these result showed the hydrogen production on Pt/TNTAs as a counter electrode was higher than on Pt foil, also indicate Pt/TNTAs was substituted for Pt foil to enhance hydrogen generation rate. In long term reaction, the stability of Pt/TNTAs electrodes was 97 %, it indicated that the electrode materials we prepared were highly stability. Finally, the TNTAs also had high oxidizing power for water, these results showed the multifunctional TNTAs electrode materials had high performance for water splitting, and applied for photoanode and photocathode. These materials had a potential in water splitting cell.
1. Highfield, J. G.; Chen, M. H.; Nguyen, P. T.; Chen, Z., Mechanistic investigations of photo-driven processes over TiO2 by in-situ DRIFTS-MS: Part 1. Platinization and methanol reforming. Energ Environ Sci 2009, 2, (9), 991-1002.
2. Malaika, A.; Krzyzynska, B.; Kozlowski, M., Catalytic decomposition of methane in the presence of in situ obtained ethylene as a method of hydrogen production. Int J Hydrogen Energ 2010, 35, (14), 7470-7475.
3. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, (5358), 37-+.
4. Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C., Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrogen Energ 2002, 27, (10), 991-1022.
5. Sun, K.; Madsen, K.; Andersen, P.; Bao, W. N.; Sun, Z. L.; Wang, D. L., Metal on metal oxide nanowire Co-catalyzed Si photocathode for solar water splitting. Nanotechnology 2012, 23, (19).
6. Seger, B.; Pedersen, T.; Laursen, A. B.; Vesborg, P. C. K.; Hansen, O.; Chorkendorff, I., Using TiO2 as a Conductive Protective Layer for Photocathodic H-2 Evolution. J. Am. Chem. Soc. 2013, 135, (3), 1057-1064.
7. Seger, B.; Laursen, A. B.; Vesborg, P. C. K.; Pedersen, T.; Hansen, O.; Dahl, S.; Chorkendorff, I., Hydrogen Production Using a Molybdenum Sulfide Catalyst on a Titanium-Protected n plus p-Silicon Photocathode. Angew Chem Int Edit 2012, 51, (36), 9128-9131.
8. Boettcher, S. W.; Warren, E. L.; Putnam, M. C.; Santori, E. A.; Turner-Evans, D.; Kelzenberg, M. D.; Walter, M. G.; McKone, J. R.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S., Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays. J. Am. Chem. Soc. 2011, 133, (5), 1216-1219.
9. Hou, Y. D.; Abrams, B. L.; Vesborg, P. C. K.; Bjorketun, M. E.; Herbst, K.; Bech, L.; Setti, A. M.; Damsgaard, C. D.; Pedersen, T.; Hansen, O.; Rossmeisl, J.; Dahl, S.; Norskov, J. K.; Chorkendorff, I., Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat Mater 2011, 10, (6), 434-438.
10. Lombardi, I.; Marchionna, S.; Zangari, G.; Pizzini, S., Effect of Pt Particle Size and Distribution on Photoelectrochemical Hydrogen Evolution by p-Si Photocathodes. Langmuir 2007, 23, (24), 12413-12420.
11. Paracchino, A.; Laporte, V.; Sivula, K.; Gratzel, M.; Thimsen, E., Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 2011, 10, (6), 456-461.
12. Ida, S.; Yamada, K.; Matsunaga, T.; Hagiwara, H.; Matsumoto, Y.; Ishihara, T., Preparation of p-Type CaFe2O4 Photocathodes for Producing Hydrogen from Water. J. Am. Chem. Soc. 2010, 132, (49), 17343-17345.
13. Price, M. J.; Maldonado, S., Macroporous n-GaP in Nonaqueous Regenerative Photoelectrochemical Cells. J Phys Chem C 2009, 113, (28), 11988-11994.
14. Yokoyama, D.; Minegishi, T.; Maeda, K.; Katayama, M.; Kubota, J.; Yamada, A.; Konagai, M.; Domen, K., Photoelectrochemical water splitting using a Cu(In,Ga)Se-2 thin film. Electrochem Commun 2010, 12, (6), 851-853.
15. Cho, I. S.; Chen, Z. B.; Forman, A. J.; Kim, D. R.; Rao, P. M.; Jaramillo, T. F.; Zheng, X. L., Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production. Nano Letters 2011, 11, (11), 4978-4984.
16. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S., Solar Water Splitting Cells. Chem. Rev. 2010, 110, (11), 6446-6473.
17. Lewis, N. S., Chemical control of charge transfer and recombination at semiconductor photoelectrode surfaces. Inorganic chemistry 2005, 44, (20), 6900-6911.
18. Miller, E. L.; DeAngelis, A.; Mallory, S., Photoelectrochemical Hydrogen Production. Electronic Materials: Science & Technology 2012, 102, 205-273.
19. Nozik, A. J.; Memming, R., Physical chemistry of semiconductor-liquid interfaces. J. Phys. Chem. 1996, 100, (31), 13061-13078.
20. Nakato, Y.; Yano, H.; Nishiura, S.; Ueda, T.; Tsubomura, H., Hydrogen Photoevolution at P-Type Silicon Electrodes Coated with Discontinuous Metal Layers. J Electroanal Chem 1987, 228, (1-2), 97-108.
21. Dominey, R. N.; Lewis, N. S.; Bruce, J. A.; Bookbinder, D. C.; Wrighton, M. S., Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes. J. Am. Chem. Soc. 1982, 104, (2), 467-482.
22. Chen, Q. Y.; Liu, J. S.; Liu, Y.; Wang, Y. H., Hydrogen production on TiO2 nanorod arrays cathode coupling with bio-anode with additional electricity generation. J Power Sources 2013, 238, 345-349.
23. Mohapatra, S. K.; Misra, M.; Mahajan, V. K.; Raja, K. S., Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode. The Journal of Physical Chemistry C 2007, 111, (24), 8677-8685.
24. Salvador, P., Semiconductors' Photoelectrochemistry: A Kinetic and Thermodynamic Analysis in the Light of Equilibrium and Nonequilibrium Models. The Journal of Physical Chemistry B 2001, 105, (26), 6128-6141.
25. Gerischer, H., The Impact of Semiconductors on the Concepts of Electrochemistry. Electrochimica Acta 1990, 35, (11-12), 1677-1699.
26. Sant, P. A.; Kamat, P. V., Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclusters. Phys. Chem. Chem. Phys. 2002, 4, (2), 198-203.
27. Holmes, M. A.; Townsend, T. K.; Osterloh, F. E., Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chemical Communications 2012, 48, (3), 371-373.
28. Osterloh, F. E., Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chemical Society Reviews 2013, 42, (6), 2294-2320.
29. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S., Solar Water Splitting Cells. Chem. Rev. 2010, 110, (11), 6446-6473.
30. Spurgeon, J. M.; Atwater, H. A.; Lewis, N. S., A comparison between the behavior of nanorod array and planar Cd(Se, Te) photoelectrodes. J Phys Chem C 2008, 112, (15), 6186-6193.
31. Lin, Y. J.; Yuan, G. B.; Liu, R.; Zhou, S.; Sheehan, S. W.; Wang, D. W., Semiconductor nanostructure-based photoelectrochemical water splitting: A brief review. Chem. Phys. Lett. 2011, 507, (4-6), 209-215.
32. Frank, A. J.; Kopidakis, N.; van de Lagemaat, J., Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coordin Chem Rev 2004, 248, (13-14), 1165-1179.
33. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A., Enhanced photocleavage of water using titania nanotube arrays. Nano Letters 2005, 5, (1), 191-195.
34. Feng, X. J.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A., Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications. Nano Letters 2008, 8, (11), 3781-3786.
35. Lin, Y. J.; Zhou, S.; Liu, X. H.; Sheehan, S.; Wang, D. W., TiO2/TiSi2 Heterostructures for High-Efficiency Photoelectrochemical H2O Splitting. J. Am. Chem. Soc. 2009, 131, (8), 2772-+.
36. Hwang, Y. J.; Boukai, A.; Yang, P. D., High Density n-Si/n-TiO2 Core/Shell Nanowire Arrays with Enhanced Photoactivity. Nano Letters 2009, 9, (1), 410-415.
37. Su, J. Z.; Feng, X. J.; Sloppy, J. D.; Guo, L. J.; Grimes, C. A., Vertically Aligned WO3 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis and Photoelectrochemical Properties. Nano Letters 2011, 11, (1), 203-208.
38. Alexander, B. D.; Kulesza, P. J.; Rutkowska, L.; Solarska, R.; Augustynski, J., Metal oxide photoanodes for solar hydrogen production. J Mater Chem 2008, 18, (20), 2298-2303.
39. Kay, A.; Cesar, I.; Gratzel, M., New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. J. Am. Chem. Soc. 2006, 128, (49), 15714-15721.
40. Heller, A.; Aspnes, D. E.; Porter, J. D.; Sheng, T. T.; Vadimsky, R. G., Transparent Metals - Preparation and Characterization of Light-Transmitting Platinum Films. J. Phys. Chem. 1985, 89, (21), 4444-4452.
41. Heller, A.; Aharon-Shalom, E.; Bonner, W. A.; Miller, B., Hydrogen-evolving semiconductor photocathodes: nature of the junction and function of the platinum group metal catalyst. J. Am. Chem. Soc. 1982, 104, (25), 6942-6948.
42. Nakato, Y.; Ueda, K.; Yano, H.; Tsubomura, H., Effect of microscopic discontinuity of metal overlayers on the photovoltages in metal-coated semiconductor-liquid junction photoelectrochemical cells for efficient solar energy conversion. The Journal of Physical Chemistry 1988, 92, (8), 2316-2324.
43. Haick, H.; Hurley, P. T.; Hochbaum, A. I.; Yang, P. D.; Lewis, N. S., Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires. J. Am. Chem. Soc. 2006, 128, (28), 8990-8991.
44. O'Leary, L. E.; Johansson, E.; Brunschwig, B. S.; Lewis, N. S., Synthesis and Characterization of Mixed Methyl/Allyl Monolayers on Si(111). Journal of Physical Chemistry B 2010, 114, (45), 14298-14302.
45. Fujishima, A.; Zhang, X. T.; Tryk, D. A., TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, (12), 515-582.
46. Chen, X.; Mao, S. S., Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, (7), 2891-2959.
47. Xiao, F. X., Self-assembly preparation of gold nanoparticles-TiO2 nanotube arrays binary hybrid nanocomposites for photocatalytic applications. J Mater Chem 2012, 22, (16), 7819-7830.
48. Macak, J. M.; Zlamal, M.; Krysa, J.; Schmuki, P., Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 2007, 3, (2), 300-304.
49. Chen, H. H.; Nanayakkara, C. E.; Grassian, V. H., Titanium Dioxide Photocatalysis in Atmospheric Chemistry. Chem. Rev. 2012, 112, (11), 5919-5948.
50. Carp, O.; Huisman, C. L.; Reller, A., Photoinduced reactivity of titanium dioxide. Prog Solid State Ch 2004, 32, (1-2), 33-177.
51. Zhuang, H. F.; Lin, C. J.; Lai, Y. K.; Sun, L.; Li, J., Some critical structure factors of titanium oxide manotube array in its photocatalytic activity. Environ. Sci. Technol. 2007, 41, (13), 4735-4740.
52. Liu, Z. Y.; Zhang, X. T.; Nishimoto, S.; Murakami, T.; Fujishima, A., Efficient Photocatalytic Degradation of Gaseous Acetaldehyde by Highly Ordered TiO2 Nanotube Arrays. Environ. Sci. Technol. 2008, 42, (22), 8547-8551.
53. Quan, X.; Yang, S. G.; Ruan, X. L.; Zhao, H. M., Preparation of titania nanotubes and their environmental applications as electrode. Environ. Sci. Technol. 2005, 39, (10), 3770-3775.
54. Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A., Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. ACS nano 2010, 4, (3), 1259-1278.
55. Liu, Z.; Zhang, X.; Nishimoto, S.; Jin, M.; Tryk, D. A.; Murakami, T.; Fujishima, A., Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J Phys Chem C 2008, 112, (1), 253-259.
56. Shankar, K.; Mor, G. K.; Prakasam, H. E.; Yoriya, S.; Paulose, M.; Varghese, O. K.; Grimes, C. A., Highly-ordered TiO2 nanotube arrays up to 220 mu m in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 2007, 18, (6).
57. Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V., Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J. Am. Chem. Soc. 2008, 130, (12), 4007-4015.
58. Varghese, O. K.; Gong, D. W.; Paulose, M.; Ong, K. G.; Dickey, E. C.; Grimes, C. A., Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv Mater 2003, 15, (7-8), 624-627.
59. Lakshmi, B. B.; Dorhout, P. K.; Martin, C. R., Sol-gel template synthesis of semiconductor nanostructures. Chem Mater 1997, 9, (3), 857-862.
60. Lakshmi, B. B.; Patrissi, C. J.; Martin, C. R., Sol-gel template synthesis of semiconductor oxide micro- and nanostructures. Chem Mater 1997, 9, (11), 2544-2550.
61. Ruan, C. M.; Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A., Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. Journal of Physical Chemistry B 2005, 109, (33), 15754-15759.
62. Macak, J. M.; Tsuchiya, H.; Schmuki, P., High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Edit 2005, 44, (14), 2100-2102.
63. Macak, J. M.; Tsuchiya, H.; Taveira, L.; Aldabergerova, S.; Schmuki, P., Smooth anodic TiO2 nanotubes. Angew Chem Int Edit 2005, 44, (45), 7463-7465.
64. Cai, Q. Y.; Paulose, M.; Varghese, O. K.; Grimes, C. A., The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J Mater Res 2005, 20, (1), 230-236.
65. Schwartzenberg, K. C.; Gray, K. A., Nanostructured Titania: the current and future promise of Titania nanotubes. Catal Sci Technol 2012, 2, (8), 1617-1624.
66. Hulteen, J. C.; Martin, C. R., A general template-based method for the preparation of nanomaterials. J Mater Chem 1997, 7, (7), 1075-1087.
67. Martin, C. R., Membrane-based synthesis of nanomaterials. Chem Mater 1996, 8, (8), 1739-1746.
68. Martin, C. R., Nanomaterials - a Membrane-Based Synthetic Approach. Science 1994, 266, (5193), 1961-1966.
69. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Formation of titanium oxide nanotube. Langmuir 1998, 14, (12), 3160-3163.
70. Tsai, C. C.; Teng, H. S., Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem Mater 2006, 18, (2), 367-373.
71. Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W. C.; Singh, R. S.; Chen, Z.; Dickey, E. C., Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 2001, 16, (12), 3331-3334.
72. Paulose, M.; Shankar, K.; Yoriya, S.; Prakasam, H. E.; Varghese, O. K.; Mor, G. K.; Latempa, T. A.; Fitzgerald, A.; Grimes, C. A., Anodic growth of highly ordered TiO2 nanotube arrays to 134 mu m in length. Journal of Physical Chemistry B 2006, 110, (33), 16179-16184.
73. Paulose, M.; Prakasam, H. E.; Varghese, O. K.; Peng, L.; Popat, K. C.; Mor, G. K.; Desai, T. A.; Grimes, C. A., TiO2 nanotube arrays of 1000 mu m length by anodization of titanium foil: Phenol red diffusion. J Phys Chem C 2007, 111, (41), 14992-14997.
74. Baiju, K. V.; Shukla, S.; Biju, S.; Reddy, M. L. P.; Warrier, K. G. K., Hydrothermal processing of dye-adsorbing one-dimensional hydrogen titanate. Mater Lett 2009, 63, (11), 923-926.
75. Vijayan, B.; Dimitrijevic, N. M.; Rajh, T.; Gray, K., Effect of Calcination Temperature on the Photocatalytic Reduction and Oxidation Processes of Hydrothermally Synthesized Titania Nanotubes. J Phys Chem C 2010, 114, (30), 12994-13002.
76. Hoyer, P., Formation of a titanium dioxide nanotube array. Langmuir 1996, 12, (6), 1411-1413.
77. Gundiah, G.; Mukhopadhyay, S.; Tumkurkar, U. G.; Govindaraj, A.; Maitra, U.; Rao, C. N. R., Hydrogel route to nanotubes of metal oxides and sulfates. J Mater Chem 2003, 13, (9), 2118-2122.
78. Asapu, R.; Palla, V. M.; Wang, B.; Guo, Z. H.; Sadu, R.; Chen, D. H., Phosphorus-doped titania nanotubes with enhanced photocatalytic activity. J Photoch Photobio A 2011, 225, (1), 81-87.
79. Vijayan, B. K.; Dimitrijevic, N. M.; Wu, J. S.; Gray, K. A., The Effects of Pt Doping on the Structure and Visible Light Photoactivity of Titania Nanotubes. J Phys Chem C 2010, 114, (49), 21262-21269.
80. Varghese, O. K.; Gong, D. W.; Paulose, M.; Grimes, C. A.; Dickey, E. C., Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J Mater Res 2003, 18, (1), 156-165.
81. Peng, T. Y.; Hasegawa, A.; Qiu, J. R.; Hirao, K., Fabrication of titania tubules with high surface area and well-developed mesostructural walls by surfactant-mediated templating method. Chem Mater 2003, 15, (10), 2011-2016.
82. Zwilling, V.; Aucouturier, M.; Darque-Ceretti, E., Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochimica Acta 1999, 45, (6), 921-929.
83. Zwilling, V.; Darque-Ceretti, E.; Boutry-Forveille, A.; David, D.; Perrin, M. Y.; Aucouturier, M., Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal 1999, 27, (7), 629-637.
84. Grimes, C. A., Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem 2007, 17, (15), 1451-1457.
85. Yoriya, S.; Prakasam, H. E.; Varghese, O. K.; Shankar, K.; Paulose, M.; Mor, G. K.; Latempa, T. J.; Grimes, C. A., Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20 mu m to 222 mu m in length. Sensor Lett 2006, 4, (3), 334-339.
86. Shankar, K.; Mor, G. K.; Fitzgerald, A.; Grimes, C. A., Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide - Water mixtures. J Phys Chem C 2007, 111, (1), 21-26.
87. Shankar, K.; Tep, K. C.; Mor, G. K.; Grimes, C. A., An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties. J Phys D Appl Phys 2006, 39, (11), 2361-2366.
88. Shin, Y.; Lee, S., Self-Organized Regular Arrays of Anodic TiO2 Nanotubes. Nano letters 2008, 8, (10), 3171-3173.
89. Su, Z. X.; Zhou, W. Z.; Jiang, F. L.; Hong, M. C., Anodic formation of nanoporous and nanotubular metal oxides. J Mater Chem 2012, 22, (2), 535-544.
90. Zhang, Z. H.; Hossain, M. F.; Takahashi, T., Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int J Hydrogen Energ 2010, 35, (16), 8528-8535.
91. Isimjan, T. T.; Rohani, S.; Ray, A. K., Photoelectrochemical water splitting for hydrogen generation on highly ordered TiO2 nanotubes fabricated by using Ti as cathode. Int J Hydrogen Energ 2012, 37, (1), 103-108.
92. Weber, M. F.; Dignam, M. J., Efficiency of Splitting Water with Semiconducting Photoelectrodes. J Electrochem Soc 1984, 131, (6), 1258-1265.
93. Murphy, A. B.; Barnes, P. R. F.; Randeniya, L. K.; Plumb, I. C.; Grey, I. E.; Horne, M. D.; Glasscock, J. A., Efficiency of solar water splitting using semiconductor electrodes. Int J Hydrogen Energ 2006, 31, (14), 1999-2017.
94. Mor, G. K.; Varghese, O. K.; Paulose, M.; Shankar, K.; Grimes, C. A., A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Solar Energy Materials and Solar Cells 2006, 90, (14), 2011-2075.
95. Lai, Y. K.; Sun, L.; Chen, Y. C.; Zhuang, H. F.; Lin, C. J.; Chin, J. W., Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity. J Electrochem Soc 2006, 153, (7), D123-D127.
96. Kokorin, A. I.; Bahnemann, D., Chemical physics of nanostructured semiconductors. VSP: Utrecht ; Boston, 2003; p xv, 263 p.
97. Paulose, M.; Mor, G. K.; Varghese, O. K.; Shankar, K.; Grimes, C. A., Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J Photoch Photobio A 2006, 178, (1), 8-15.
98. Liu, G. H.; Wang, K. Y.; Hoivik, N.; Jakobsen, H., Progress on free-standing and flow-through TiO2 nanotube membranes. Sol Energ Mat Sol C 2012, 98, 24-38.
99. Zhu, B.; Li, J. J.; Chen, Q. W.; Cao, R. G.; Li, J. M.; Xu, D. S., Artificial, switchable K+-gated ion channels based on flow-through titania-nanotube arrays. Phys. Chem. Chem. Phys. 2010, 12, (34), 9989-9992.
100. Macak, J. M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P., TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr Opin Solid St M 2007, 11, (1-2), 3-18.
101. Su, Z. X.; Zhou, W. Z., Formation, morphology control and applications of anodic TiO2 nanotube arrays. J Mater Chem 2011, 21, (25), 8955-8970.
102. Wang, J.; Lin, Z. Q., Anodic Formation of Ordered TiO2 Nanotube Arrays: Effects of Electrolyte Temperature and Anodization Potential. J Phys Chem C 2009, 113, (10), 4026-4030.
103. Taveira, L. V.; Macak, J. M.; Tsuchiya, H.; Dick, L. F. P.; Schmuki, P., Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4)(2)SO4 electrolytes. J Electrochem Soc 2005, 152, (10), B405-B410.
104. Bauer, S.; Kleber, S.; Schmuki, P., TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes. Electrochem Commun 2006, 8, (8), 1321-1325.
105. Guan, D. S.; Fang, H. T.; Lu, H. F.; Sun, T.; Li, F.; Liu, M., Preparation and Doping of Anodic TiO2 Nanotube Array. Prog Chem 2008, 20, (12), 1868-1879.
106. Hahn, R.; Macak, J. M.; Schmuki, P., Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes. Electrochem Commun 2007, 9, (5), 947-952.
107. Allam, N. K.; Grimes, C. A., Formation of vertically oriented TiO2 nanotube arrays using a fluoride free HCl aqueous electrolyte. J Phys Chem C 2007, 111, (35), 13028-13032.
108. Richter, C.; Wu, Z.; Panaitescu, E.; Willey, R. J.; Menon, L., Ultrahigh-aspect-ratio titania nanotubes. Adv Mater 2007, 19, (7), 946-+.
109. Raja, K. S.; Gandhi, T.; Misra, M., Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes. Electrochem Commun 2007, 9, (5), 1069-1076.
110. Macak, J. M.; Tsuchiya, H.; Berger, S.; Bauer, S.; Fujimoto, S.; Schmuki, P., On wafer TiO2 nanotube-layer formation by anodization of Ti-films on Si. Chem. Phys. Lett. 2006, 428, (4-6), 421-425.
111. Ghicov, A.; Tsuchiya, H.; Macak, J. M.; Schmuki, P., Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem Commun 2005, 7, (5), 505-509.
112. Lockman, Z.; Ismail, S.; Sreekantan, S.; Schmidt-Mende, L.; MacManus-Driscoll, J. L., The rapid growth of 3 mu m long titania nanotubes by anodization of titanium in a neutral electrochemical bath. Nanotechnology 2010, 21, (5).
113. Nowotny, J.; Bak, T.; Nowotny, M. K.; Sheppard, L. R., Titanium dioxide for solar-hydrogen I. Functional properties. Int J Hydrogen Energ 2007, 32, (14), 2609-2629.
114. Nowotny, J.; Sorrell, C. C.; Sheppard, L. R.; Bak, T., Solar-hydrogen: Environmentally safe fuel for the future. Int J Hydrogen Energ 2005, 30, (5), 521-544.
115. Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C., Defect chemistry and semiconducting properties of titanium dioxide: I. Intrinsic electronic equilibrium. J. Phys. Chem. Solids 2003, 64, (7), 1043-1056.
116. Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C., Defect chemistry and semiconducting properties of titanium dioxide: II. Defect diagrams. J. Phys. Chem. Solids 2003, 64, (7), 1057-1067.
117. Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C., Defect chemistry and semiconducting properties of titanium dioxide: III. Mobility of electronic charge carriers. J. Phys. Chem. Solids 2003, 64, (7), 1069-1087.
118. Lai, C. W.; Sreekantan, S., Higher water splitting hydrogen generation rate for single crystalline anatase phase of TiO2 nanotube arrays. Eur Phys J-Appl Phys 2012, 59, (2).
119. Ghicov, A.; Tsuchiya, H.; Macak, J. M.; Schmuki, P., Annealing effects on the photoresponse of TiO(2) nanotubes. Phys Status Solidi A 2006, 203, (4), R28-R30.
120. Gong, J.; Lai, Y.; Lin, C., Electrochemically multi-anodized TiO2 nanotube arrays for enhancing hydrogen generation by photoelectrocatalytic water splitting. Electrochimica Acta 2010, 55, (16), 4776-4782.
121. Zhang, Z.; Zhang, L.; Hedhili, M. N.; Zhang, H.; Wang, P., Plasmonic Gold Nanocrystals Coupled with Photonic Crystal Seamlessly on TiO2 Nanotube Photoelectrodes for Efficient Visible Light Photoelectrochemical Water Splitting. Nano Letters 2012, 13, (1), 14-20.
122. Siripala, W.; Ivanovskaya, A.; Jaramillo, T. F.; Baeck, S. H.; McFarland, E. W., A CU2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Solar Energy Materials and Solar Cells 2003, 77, (3), 229-237.
123. Ye, M.; Gong, J.; Lai, Y.; Lin, C.; Lin, Z., High-Efficiency Photoelectrocatalytic Hydrogen Generation Enabled by Palladium Quantum Dots-Sensitized TiO2 Nanotube Arrays. J. Am. Chem. Soc. 2012, 134, (38), 15720-15723.
124. Krengvirat, W.; Sreekantan, S.; Mohd Noor, A.-F.; Negishi, N.; Oh, S. Y.; Kawamura, G.; Muto, H.; Matsuda, A., Carbon-incorporated TiO2 photoelectrodes prepared via rapid-anodic oxidation for efficient visible-light hydrogen generation. Int J Hydrogen Energ 2012, 37, (13), 10046-10056.
125. Lai, Y.; Gong, J.; Lin, C., Self-organized TiO2 nanotube arrays with uniform platinum nanoparticles for highly efficient water splitting. Int J Hydrogen Energ 2012, 37, (8), 6438-6446.
126. Gong, J.; Lin, C.; Ye, M.; Lai, Y., Enhanced photoelectrochemical activities of a nanocomposite film with a bamboo leaf-like structured TiO2 layer on TiO2 nanotube arrays. Chemical Communications 2011, 47, (9), 2598-2600.
127. Lee, Y. L.; Chi, C. F.; Liau, S. Y., CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Efficient Hydrogen Generation in a Photoelectrochemical Cell. Chemistry of Materials 2010, 22, (3), 922-927.
128. Yu, J. C.; Yu, J. G.; Ho, W. K.; Jiang, Z. T.; Zhang, L. Z., Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chemistry of Materials 2002, 14, (9), 3808-3816.
129. Li, Q.; Shang, J. K., Self-Organized Nitrogen and Fluorine Co-doped Titanium Oxide Nanotube Arrays with Enhanced Visible Light Photocatalytic Performance. Environ. Sci. Technol. 2009, 43, (23), 8923-8929.
130. Yamaguti, K.; Sato, S., Photolysis of Water over Metallized Powdered Titanium-Dioxide. J Chem Soc Farad T 1 1985, 81, 1237-1246.
131. Kudo, A.; Domen, K.; Maruya, K.; Onishi, T., Photocatalytic Activities of Tio2 Loaded with Nio. Chem. Phys. Lett. 1987, 133, (6), 517-519.
132. Sayama, K.; Arakawa, H., Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt-TiO2 catalyst. J Chem Soc Faraday T 1997, 93, (8), 1647-1654.
133. Li, G.; Liu, Z. Q.; Lu, J.; Wang, L.; Zhang, Z., Effect of calcination temperature on the morphology and surface properties of TiO2 nanotube arrays. Appl Surf Sci 2009, 255, (16), 7323-7328.
134. Zhang, H. Z.; Banfield, J. F., Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation. J Mater Res 2000, 15, (2), 437-448.
135. Feng, X. J.; Sloppy, J. D.; LaTemp, T. J.; Paulose, M.; Komarneni, S.; Bao, N. Z.; Grimes, C. A., Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays: application to the photocatalytic reduction of carbon dioxide. J Mater Chem 2011, 21, (35), 13429-13433.
136. Hardcastle, F. D.; Ishihara, H.; Sharma, R.; Biris, A. S., Photoelectroactivity and Raman spectroscopy of anodized titania (TiO2) photoactive water-splitting catalysts as a function of oxygen-annealing temperature. J Mater Chem 2011, 21, (17), 6337-6345.
137. Chen, C. H.; Shieh, J.; Hsieh, S. M.; Kuo, C. L.; Liao, H. Y., Architecture, optical absorption, and photocurrent response of oxygen-deficient mixed-phase titania nanostructures. Acta Materialia 2012, 60, (18), 6429-6439.
138. Chang, S. M.; Liu, W. S., Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Appl Catal B-Environ 2011, 101, (3-4), 333-342.
139. Doong, R. A.; Chang, S. M.; Tsai, C. W., Enhanced photoactivity of Cu-deposited titanate nanotubes for removal of bisphenol A. Appl Catal B-Environ 2013, 129, 48-55.
140. Chang, S. M.; Hsu, Y. Y.; Chan, T. S., Chemical Capture of Phosphine by a Sol-Gel-Derived Cu/TiO2 Adsorbent - Interaction Mechanisms. J Phys Chem C 2011, 115, (5), 2005-2013.
141. Kang, Q.; Cao, J. Y.; Zhang, Y. J.; Liu, L. Q.; Xu, H.; Ye, J. H., Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J Mater Chem A 2013, 1, (18), 5766-5774.
142. Mills, A.; LeHunte, S., An overview of semiconductor photocatalysis. J Photoch Photobio A 1997, 108, (1), 1-35.
143. Diebold, U., The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, (5-8), 53-229.
144. Pang, C. L.; Lindsay, R.; Thornton, G., Chemical reactions on rutile TiO2(110). Chemical Society Reviews 2008, 37, (10), 2328-2353.
145. Dohnalek, Z.; Lyubinetsky, I.; Rousseau, R., Thermally-driven processes on rutile TiO2(110)-(1 x 1): A direct view at the atomic scale. Prog Surf Sci 2010, 85, (5-8), 161-205.
146. Henderson, M. A., The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 2002, 46, (1-8), 1-308.
147. Henderson, M. A., A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 2011, 66, (6-7), 185-297.
148. Li, S. C.; Zhang, Z.; Sheppard, D.; Kay, B. D.; White, J. M.; Du, Y.; Lyubinetsky, I.; Henkelman, G.; Dohnalek, Z., Intrinsic diffusion of hydrogen on rutile TiO2(110). J. Am. Chem. Soc. 2008, 130, (28), 9080-9088.
149. Bezilla, B. M.; Maloy, J. T., Low-Temperature Studies of Electrochemical Kinetics .3. Use of Concentration Studies in Determining the Rates, Mechanisms, and Apparent Reaction Orders of Electrohydrodimerization Reactions. J Electrochem Soc 1979, 126, (4), 579-583.
150. Trasatti, S., Work Function, Electronegativity, and Electrochemical Behavior of Metals .3. Electrolytic Hydrogen Evolution in Acid Solutions. J Electroanal Chem 1972, 39, (1), 163-&.
151. Lai, Y. K.; Gong, J. J.; Lin, C. J., Self-organized TiO2 nanotube arrays with uniform platinum nanoparticles for highly efficient water splitting. Int J Hydrogen Energ 2012, 37, (8), 6438-6446.
152. Burgeth, G.; Kisch, H., Photocatalytic and photoelectrochemical properties of titania-chloroplatinate(IV). Coordin Chem Rev 2002, 230, (1-2), 41-47.
153. Wood, A.; Giersig, M.; Mulvaney, P., Fermi level equilibration in quantum dot-metal nanojunctions. Journal of Physical Chemistry B 2001, 105, (37), 8810-8815.
154. Jakob, M.; Levanon, H.; Kamat, P. V., Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level. Nano Letters 2003, 3, (3), 353-358.
155. Subramanian, V.; Wolf, E. E.; Kamat, P. V., Green Emission to Probe Photoinduced Charging Events in ZnO−Au Nanoparticles. Charge Distribution and Fermi-Level Equilibration†. The Journal of Physical Chemistry B 2003, 107, (30), 7479-7485.
156. Subramanian, V.; Wolf, E. E.; Kamat, P. V., Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 2004, 126, (15), 4943-4950.
157. Xu, J. X.; Xiao, X. H.; Ren, F.; Wu, W.; Dai, Z. G.; Cai, G. X.; Zhang, S. F.; Zhou, J.; Mei, F.; Jiang, C. Z., Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island. Nanoscale Res Lett 2012, 7.
158. Tan, T. T. Y.; Yip, C. K.; Beydoun, D.; Amal, R., Effects of nano-Ag particles loading on TiO2 photocatalytic reduction of selenate ions. Chem Eng J 2003, 95, (1-3), 179-186.
159. Anpo, M.; Takeuchi, M., The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 2003, 216, (1-2), 505-516.
160. Sadeghi, M.; Liu, W.; Zhang, T. G.; Stavropoulos, P.; Levy, B., Role of photoinduced charge carrier separation distance in heterogeneous photocatalysis: Oxidative degradation of CH3OH vapor in contact with Pt/TiO2 and cofumed TiO2-Fe2O3. J. Phys. Chem. 1996, 100, (50), 19466-19474.
161. Yun, M. S.; Ramalingam, B.; Gangopadhyay, S., Room temperature observation of size dependent single electron tunneling in a sub-2 nm size tunable Pt nanoparticle embedded metal-oxide-semiconductor structure. Nanotechnology 2011, 22, (46).
162. Yun, M.; Mueller, D. W.; Hossain, M.; Misra, V.; Gangopadhyay, S., Sub-2 nm Size-Tunable High-Density Pt Nanoparticle Embedded Nonvolatile Memory. Ieee Electr Device L 2009, 30, (12), 1362-1364.
163. Sakthivel, S.; Shankar, M. V.; Palanichamy, M.; Arabindoo, B.; Bahnemann, D. W.; Murugesan, V., Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res 2004, 38, (13), 3001-3008.
164. Zhao, W.; Wang, Z. Y.; Shen, X. Y.; Li, J. L.; Xu, C. B.; Gan, Z. X., Hydrogen generation via photoelectrocatalytic water splitting using a tungsten trioxide catalyst under visible light irradiation. Int J Hydrogen Energ 2012, 37, (1), 908-915.
165. Zhang, H. J.; Chen, G. H.; Bahnemann, D. W., Photoelectrocatalytic materials for environmental applications. J Mater Chem 2009, 19, (29), 5089-5121.
166. Sreethawong, T.; Puangpetch, T.; Chavadej, S.; Yoshikawa, S., Quantifying influence of operational parameters on photocatalytic H2 evolution over Pt-loaded nanocrystalline mesoporous TiO2 prepared by single-step sol–gel process with surfactant template. J Power Sources 2007, 165, (2), 861-869.
167. Evgenidou, E.; Fytianos, K.; Poulios, I., Photocatalytic oxidation of dimethoate in aqueous solutions. J Photoch Photobio A 2005, 175, (1), 29-38.
168. Bhatkhande, D. S.; Pangarkar, V. G.; Beenackers, A. A. C. M., Photocatalytic degradation for environmental applications - a review. J. Chem. Technol. Biotechnol. 2002, 77, (1), 102-116.
169. Berger, T.; Monllor-Satoca, D.; Jankulovska, M.; Lana-Villarreal, T.; Gomez, R., The Electrochemistry of Nanostructured Titanium Dioxide Electrodes. Chemphyschem 2012, 13, (12), 2824-2875.
170. Fang, X. M.; Ma, T. L.; Guan, G. Q.; Akiyama, M.; Kida, T.; Abe, E., Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell. J Electroanal Chem 2004, 570, (2), 257-263.
171. An, W. J.; Wang, W. N.; Ramalingam, B.; Mukherjee, S.; Daubayev, B.; Gangopadhyay, S.; Biswas, P., Enhanced Water Photolysis with Pt Metal Nanoparticles on Single Crystal TiO2 Surfaces. Langmuir 2012, 28, (19), 7528-7534.
172. Huang, Q.; Kang, F.; Liu, H.; Li, Q.; Xiao, X. D., Highly aligned Cu2O/CuO/TiO2 core/shell nanowire arrays as photocathodes for water photoelectrolysis. J Mater Chem A 2013, 1, (7), 2418-2425.
173. Zhang, Z. H.; Wang, P., Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J Mater Chem 2012, 22, (6), 2456-2464.
174. Warren, E. L.; McKone, J. R.; Atwater, H. A.; Gray, H. B.; Lewis, N. S., Hydrogen-evolution characteristics of Ni-Mo-coated, radial junction, n(+)p-silicon microwire array photocathodes. Energ Environ Sci 2012, 5, (11), 9653-9661.
175. Hartmann, P.; Lee, D. K.; Smarsly, B. M.; Janek, J., Mesoporous TiO2: Comparison of Classical Sol-Gel and Nanoparticle Based Photoelectrodes for the Water Splitting Reaction. Acs Nano 2010, 4, (6), 3147-3154.
176. Zhang, Z. H.; Zhang, L. B.; Hedhili, M. N.; Zhang, H. N.; Wang, P., Plasmonic Gold Nanocrystals Coupled with Photonic Crystal Seamlessly on TiO2 Nanotube Photoelectrodes for Efficient Visible Light Photoelectrochemical Water Splitting. Nano Letters 2013, 13, (1), 14-20.
177. Gong, J. J.; Lin, C. J.; Ye, M. D.; Lai, Y. K., Enhanced photoelectrochemical activities of a nanocomposite film with a bamboo leaf-like structured TiO2 layer on TiO2 nanotube arrays. Chemical Communications 2011, 47, (9), 2598-2600.
178. Li, Y. K.; Yu, H. M.; Zhang, C. K.; Song, W.; Li, G. F.; Shao, Z. G.; Yi, B. L., Effect of water and annealing temperature of anodized TiO2 nanotubes on hydrogen production in photoelectrochemical cell. Electrochimica Acta 2013, 107, 313-319.
179. Li, Y. K.; Yu, H. M.; Song, W.; Li, G. F.; Yi, B. L.; Shao, Z. G., A novel photoelectrochemical cell with self-organized TiO2 nanotubes as photoanodes for hydrogen generation. Int J Hydrogen Energ 2011, 36, (22), 14374-14380.