簡易檢索 / 詳目顯示

研究生: 洪國智
Hung, Kuo-Chih
論文名稱: 數類p-拉普拉斯多重參數分枝問題全分枝性及確切正解個數之研究
Global Bifurcation and Exact Multiplicity of Positive Solutions for Some Classes of p-Laplacian Multiparameter Problems
指導教授: 王信華
Wang, Shin-Hwa
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 155
中文關鍵詞: 全分枝性確切解之個數正解p-拉普拉斯分枝曲線圖時間映射
外文關鍵詞: Global Bifurcation, Exact multiplicity, Positive solution, p-Laplacian, Bifurcation diagram, Time map
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文共有六章︰第一章為簡介。第二章主要討論一維兩點邊界值拉普拉斯多重參數問題的正解全分枝性及確切正解個數。第三章主要研究一維兩點邊界值p-拉普拉斯多重參數問題,我們假設函數滿足(H1)-(H3)及((H4a)或(H4b)),在這些條件之下,我們利用時間映射(time map)的方法來研究此一問題,我們得到數種不同的分支曲線圖,而這些分支曲線不是單調曲線就是只有一個(朝右)轉折點之曲線。第四章主要研究一維兩點邊界值拉普拉斯多重參數問題,我們假設函數滿足(A1)-(A3)及((A4a)或(A4b)),在這些條件之下,我們得到更多不同的分支曲線圖,而這些分支曲線不是單調曲線就是只有一個(朝左)轉折點之曲線。在第五章裡,我們討論一維兩點邊界值p-拉普拉斯問題確切正解之個數,其中函數g是屬於weak Allee effect型式的函數。在最後一章裡,我們討論一維兩點邊界值p-拉普拉斯問題確切正解之個數,其中函數f是屬於有理形式的函數。


    Chapter 1 Introduction 3 Chapter 2 Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity 11 2.1 Main results for a positone problem with cubic nonlinearity . . . . . . . . . . . 11 2.2 Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Proofs of Theorems 1 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.1 A remark on the time-map techniques developed in this chapter . . . . 31 2.4.2 Three open problems with observed similar global bifurcation results in Theorem 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Chapter 3 A complete classi…cation of bifurcation diagrams of classes of multiparame- ter p-Laplacian boundary value problems 34 3.1 Main results for classes of multiparameter p-Laplacian problems . . . . . . . . 34 3.2 Some remarks and lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3 Proofs of Theorems 12 and 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Chapter 4 A complete classi…cation of bifurcation diagrams of classes of multiparame- ter Dirichlet problems with concave-convex nonlinearities 74 4.1 Main results for classes of multiparameter Dirichlet problems with concave- convex nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2 Some remarks and lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.3 Proofs of Theorems 17 and 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Chapter 5 Exact multiplicity of positive solutions and the bifurcation curve of a p- Laplacian Dirichlet problem with weak Allee e¤ect and their applications 114 5.1 Main results for a p-Laplacian problem with weak Allee e¤ect . . . . . . . . . 114 1 5.2 Two applications of Corollary 26: Generalized logistic and Allen-Cahn type nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.3 Two other applications of Corollary 26: Generalized cubic nonlinearities and nonlinearities of logistic type with predation . . . . . . . . . . . . . . . . . . . 129 Chapter 6 Classi…cation and evolution of bifurcation diagrams for a p-Laplacian prob- lem with nonlinearity of rational form 134 6.1 Main results for a p-Laplacian problem with nonlinearity of rational form . . . 134 6.2 Statements and proofs of Theorem 34 and Corollary 35 . . . . . . . . . . . . . 138 6.3 Proof of Theorem 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.4 A remark to Theorem 31 and two applications of Corollary 35 . . . . . . . . . 146

    [1] G.A. Afrouzi, S.H. Rasouli, Instability of positive solutions for population models involv-
    ing the p-Laplacian operator, Glob. J. Pure Appl. Math. 2 (2006) 51–54.
    [2] G.A. Afrouzi, S.H. Rasouli, Population models involving the p-Laplacian with inde…nite
    weight and constant yield harvesting, Chaos Solitons Fractals 31 (2007) 404–408.
    [3] S. Alama, G. Tarantello, On semilinear elliptic equations with inde…nite non-linearities,
    Calc. Var. Partial Di¤erential Equations 1 (1993) 439–475.
    [4] W.C. Allee, The social life of animals, Norton, New York, 1938.
    [5] H. Amann, J. López-Gómez, A priori bounds and multiple solutions for superlinear in-
    de…nite elliptic problems, J. Di¤erential Equations 146 (1998) 336–374.
    [6] A. Ambrosetti, H. Brezis, G. Cerami, Combined e¤ects of concave and convex nonlinear-
    ities in some elliptic problems, J. Funct. Anal. 122 (1994) 519–543.
    [7] J. Bebernes, D. Eberly, Mathematical Problems from Combustion Theory, Springer-
    Verlag, New York, 1989.
    [8] H. Berestycki, I. Capuzzo-Dolcetta, L. Nirenberg, Variational methods for inde…nite su-
    perlinear homogeneous elliptic problems, Nonlinear Di¤erential Equations Appl. 2 (1995)
    553–572.
    [9] K.J. Brown, M.M.A. Ibrahim, R. Shivaji, S-shaped bifurcation curves, Nonlinear Anal.
    5 (1981) 475–486.
    [10] S. Caldwell, A. Castro, R. Shivaji, S. Unsurangsie, Positive solutions for classes of multi-
    parameter elliptic semipositone problems, Electron. J. Di¤erential Equations 2007 (2007)
    1-10.
    150
    [11] S. Caldwell, R. Shivaji, J. Zhu, Positive solutions for classes of multiparameter boundary
    value problems, Dynam. Systems Appl. 11 (2002) 205–220.
    [12] A. Cañada, P. Drábek, J.L. Gámez, Existence of positive solutions for some problems
    with nonlinear di¤usion, Trans. Amer. Math. Soc. 349 (1997) 4231–4249.
    [13] J.G. Cheng, Uniqueness results for the one-dimensional p-Laplacian, J. Math. Anal. Appl.
    311 (2005) 381–388.
    [14] C.W. Clark, Mathematical Bioeconomics: the Optimal Management of Renewable Re-
    sources, John Wiley & Sons, New York, 1991.
    [15] E.D. Conway, Di¤usion and the predator-prey interaction: steady states with ‡ux at the
    boundaries, Contemp. Math. 17 (1983) 215–234.
    [16] F. Courchamp, B. Grenfell, T. Clutton-Brock, Impact of natural enemies on obligately
    cooperatively breeders, Oikos 91 (2000) 311–322.
    [17] M.G. Crandall, P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and
    linearized stability, Arch. Rational Mech. Anal. 52 (1973) 161–180.
    [18] B. Dennis, Allee e¤ects: population growth, critical density, and the chance of extinction,
    Natur. Resource Modeling 3 (1989) 481–538.
    [19] J.I. Díaz, Nonlinear partial di¤erential equations and free boundaries. Vol. I. Elliptic
    equations. Research Notes in Mathematics, 106, Pitman, Boston, MA, 1985.
    [20] J.I. Díaz, J. Hernández, Global bifurcation and continua of nonnegative solutions for a
    quasilinear elliptic problem, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 587–592.
    [21] J.I. Díaz, J. Hernández, F.J. Mancebo, Branches of positive and free boundary so-
    lutions for some singular quasilinear elliptic problems, J. Math. Anal. Appl. (2008),
    doi:10.1016/j.jmaa.2008.07.073.
    [22] Y. Du, Exact multiplicity and S-shaped bifurcation curve for some semilinear elliptic
    problems from combustion theory, SIAM J. Math. Anal. 32 (2000) 707–733.
    [23] Y. Du, Z. Guo, Liouville type results and eventual ‡atness of positive solutions for p-
    Laplacian equations, Adv. Di¤erential Equations 7 (2002) 1479–1512.
    151
    [24] M. Feng, X. Zhang, W. Ge, Exact number of solutions for a class of two-point boundary
    value problems with one-dimensional p-Laplacian, J. Math. Anal. Appl. 338 (2008) 784–
    792.
    [25] J. Ferdy, F. Austerlitz, J. Moret, P. Bouyon, B. Godelle, Pollinator-induced density
    dependence in deceptive species, Oikos 87 (1999) 549–560.
    [26] P. Gray, S.K. Scott, Chemical Oscillations and Instabilities: Nonlinear Chemical Kinetics,
    Clarendon Press, Oxford, 1990.
    [27] Y.X. Huang, J. W.-H. So, On bifurcation and existence of positive solutions for a certain
    p-Laplacian system, Rocky Mountain J. Math. 25 (1995) 285–297.
    [28] K.-C. Hung, S.-H. Wang, A complete classi…cation of bifurcation diagrams of classes
    of p-Laplacian multiparameter boundary value problems, accepted to appear in J. of
    Di¤erential Equations (2009), doi:10.1016/j.jde.2008.10.035.
    [29] K.-C. Hung, S.-H. Wang, A complete classi…cation of bifurcation diagrams of classes of
    a multiparameter Dirichlet problem with concave-convex nonlinearities, J. Math. Anal.
    Appl. 349 (2009) 113–134.
    [30] G. Jarne, J. Sanchez-Choliz, F. Fatas-Villafranca, “S-shaped”Economic Dynamics. The
    Logistic and Gompertz curves generalized, Electronic J. Evol. Modeling Econ. Dyn., No.
    1048 (2005) http://www.e-jemed.org/1048/index.php.
    [31] G. Jarne, J. Sanchez-Choliz, F. Fatas-Villafranca, “S-shaped”curves in economic growth.
    A theorical contribution and an application, Evol. Inst. Econ. Rev. 3 (2007) 1167–1182.
    [32] J.P. Kernevez, D. Thomas, Numerical analysis and control of some biochemical systems,
    Appl. Math. Optim. 1 (1975) 222–285.
    [33] P. Korman, On uniqueness of positive solutions for a class of semilinear equations, Dis-
    crete Contin. Dyn. Syst. 8 (2002) 865–871.
    [34] P. Korman, Y. Li, On the exactness of an S-shaped bifurcation curve, Proc. Amer. Math.
    Soc. 127 (1999) 1011–1020.
    [35] P. Korman, Y. Li, T. Ouyang, Computing the location and the direction of bifurcation,
    Mathematical Research Letters 12 (2005) 933-944.
    152
    [36] P. Korman, J. Shi, New exact multiplicity results with an application to a population
    model, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 1167–1182.
    [37] M. Kuussaari, I. Saccheri, I. Hanski, Allee e¤ect and population dynamics in the Glanville
    fritillary butter‡y, Oikos 82 (1998) 384–392.
    [38] T. Laetsch, The number of solutions of a nonlinear two point boundary value problem,
    Indiana Univ. Math. J. 20 (1970) 1–13.
    [39] A. Lakmeche, A. Hammoudi, Multiple positive solutions of the one-dimensional p-
    Laplacian, J. Math. Anal. Appl. 317 (2006) 43–49.
    [40] R. Lande, S. Engen, B.-E. Sæher, Stochastic Population Dynamics in Ecology and Con-
    servation, Oxford University Press, Oxford, 2003.
    [41] S.-Y. Lee, S.-H. Wang, C.-P. Ye, Explicit necessary and su¢ cient conditions for the
    existence of a dead core solution of a p-Laplacian steady-state reaction-di¤usion problem,
    Discrete Contin. Dyn. Syst. suppl. (2005) 587–596.
    [42] S. Lian, H. Yuan, C. Cao, W. Gao, X. Xu, On the Cauchy problem for the evolution p-
    Laplacian equations with gradient term and source, J. Di¤erential Equations 235 (2007)
    544–585.
    [43] R. Logan, Positive solutions to a system of di¤erential equations modeling a competitive
    interactive system with nonlogistic growth rates, Di¤erential Integral Equations 10 (1997)
    929–945.
    [44] C. Lu, Multiple steady states in a biochemical system, SIAM J. Math. Anal. 18 (1987)
    1771–1783.
    [45] C. Lu, Global bifurcation of steady-state solutions on a biochemical system, SIAM J.
    Math. Anal. 21 (1990) 76–84.
    [46] P.M. McCabe, J.A. Leach, D.J. Needham, The evolution of travelling waves in fraction
    order autocatalysis with decay, I. Permanent from travelling waves, SIAM J. Appl. Math.
    59 (1998) 870–899.
    [47] J.D. Murray, A simple method for obtaining approximate solutions for a class of di¤usion-
    kinetics enzyme problems. II. Further examples and nonsymmetric problems, Math.
    Biosci. 3 (1968) 115-133.
    153
    [48] S. Oruganti, J. Shi, R. Shivaji, Logistic equation wtih the p-Laplacian and constant yield
    harvesting, Abstr. Appl. Anal. (2004) 723–727.
    [49] T. Ouyang, On the positive solutions of semilinear equations u + u 􀀀 hup = 0 on the
    compact manifolds, Trans. Amer. Math. Soc. 331 (1992) 503–527.
    [50] H.L. Royden, Real Analysis, Macmillan, New York, 1988.
    [51] J. Sanchez, P. Ubilla, One-dimensional elliptic equation with concave and convex nonlin-
    earities, Electron. J. Di¤erential Equations 2000 (2000) 1–9.
    [52] J. Shi, Multi-parameter bifurcation and applications, in ICM2002 Satellite Conference
    on Nonlinear Functional Analysis: Topological Methods, Variational Methods and Their
    Applications, H. Brezis, K. C. Chang, S. J. Li, P. Rabinowitz, eds., World Scienti…c,
    Singapore, 2003, 211–222.
    [53] J. Shi, R. Shivaji, Exact multiplicity of solutions for classes of semipositone problems
    with concave-convex nonlinearity, Discrete Contin. Dynam. Systems 7 (2001) 559–571.
    [54] J. Shi, R. Shivaji, Semilinear elliptic equations with generalized cubic nonlinearities,
    Discrete Contin. Dyn. Syst. suppl. (2005) 798–805.
    [55] J. Shi, R. Shivaji, Persistence in reaction di¤usion models with weak Allee e¤ect, J. Math.
    Biol. 52 (2006) 807–829.
    [56] J.G. Skellam, Random dispersal in theoretical populations, Biometrika 38 (1951) 196–281.
    [57] J. Smoller, A. Wasserman, Global bifurcation of steady-state solutions, J. Di¤erential
    Equations 39 (1981) 269–290.
    [58] P.A. Stephens, W.J. Sutherland, R.P. Freckleton, What is the Allee e¤ect? Oikos 87
    (1999) 185–190.
    [59] A. Stoner, M. Ray-Culp, Evidence for Allee e¤ects in an over-harvested marine gastropod:
    density dependent mating and egg production, Mar. Ecol. Prog. Ser. 202 (2000) 297–302.
    [60] M. Tang, Exact multiplicity for semilinear Dirichlet probleminvolving concave and convex
    nonlinearities, Proc. Royal Soc. Edinburgh Sect. A. 133 (2003) 705–717.
    [61] M.-H. Wang, M. Kot, Speeds of invasion in a model with strong or weak Allee e¤ects,
    Math. Biosci. 171 (2001) 83–97.
    154
    [62] M.-H. Wang, M. Kot, M.G. Neubert, Integrodi¤erence equations, Allee e¤ects, and inva-
    sions, J. Math. Biol. 44 (2002) 150–168.
    [63] S.-H. Wang, Bifurcation of positive solutions of generalized nonlinear undamped pendu-
    lum problems, Bull. Inst. Math. Acad. Sinica 21 (1993) 211–227.
    [64] S.-H. Wang, On S-shaped bifurcation curves, Nonlinear Anal. 22 (1994) 1475–1485.
    [65] S.-H. Wang and D.-M. Long, An exact multiplicity theorem involving concave-convex
    nonlinearities and its application to stationary solutions of a singular di¤usion problem,
    Nonlinear Anal. 44 (2001), 469-486.
    [66] S.-H.Wang, N.D. Kazarino¤, Bifurcation and stability of positive solutions of a two-point
    boundary value problem, J. Austral. Math. Soc. Ser. A 52 (1992) 334–342.
    [67] S.-H. Wang, T.-S. Yeh, Exact multiplicity and ordering properties of positive solutions of
    a p-Laplacian Dirichlet problem and their applications, J. Math. Anal. Appl. 287 (2003)
    380–398.
    [68] S.-H. Wang, T.-S. Yeh, A complete classi…cation of bifurcation diagrams of a Dirichlet
    problem with concave-convex nonlinearities, J. Math. Anal. Appl. 291 (2004) 128–153.
    [69] S.-H. Wang, T.-S. Yeh, A complete classi…cation of bifurcation diagrams of a p-Laplacian
    Dirichlet problem, Nonlinear Anal. 64 (2006) 2412–2432.
    [70] J. Xin, Front propagation in heterogeneous media, SIAM Review 42 (2000) 161–230.
    [71] Y. Zhao, Y. Wang, J. Shi, Exact multiplicity of solutions and S-shaped bifurcation curve
    for a class of semilinear elliptic equations, J. Math. Anal. Appl. 331 (2007) 263–278.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE