簡易檢索 / 詳目顯示

研究生: 宋敏安
Ming-An Song
論文名稱: 以壓鑄法製備多孔鋁之製程研究
Study on the Preparation of Porous Aluminum by Die Casting
指導教授: 周更生
Kan-Sen Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
中文關鍵詞: 多孔鋁壓鑄法
外文關鍵詞: Porous Aluminum, Die Casting
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討以壓鑄法製備多孔鋁的製作程序,並以消失模鑄漿法與陶瓷球壓鑄成型法為主。消失模鑄漿法中,利用泡綿浸泡於有機溶劑的膨潤現象,增加泡綿骨架結構,進而控制多孔金屬鋁材的骨架粗細,並利用不同規格的泡棉,我們可以製備骨架厚度最細為0.117mm或最粗達0.458mm的多孔金屬鋁,孔隙度值在90∼95% 之間。
    而陶瓷球鑄漿製程中,我們使用一特殊的組成配方(氧化鋁粉:皂土:HPMC:水:PVA重量比為100:1:2:48.3:2.4),使陶瓷球具備鑄鋁過程中足夠的強度,並且可以在壓鑄完成後,用高壓水柱除去多孔鋁材內部的陶瓷球,以製備多孔金屬鋁。最重要的是陶瓷球在室溫下具備可塑性,可以利用壓縮的方式,改變陶瓷球堆積體的緊密程度,進而控制成品的孔隙度。另外也可以藉由規則堆積的方法,改善隨意堆積造成的不均勻性,進而改善成品結構的均勻性。本法所得到的多孔鋁成品,其孔隙度約在80∼89% 之間。


    The preparation of porous aluminum by die casting was investigated in this work, including both the 〝lost foam 〞method and the〝ceramic ball preform 〞method. In the lost foam die casting method, we utilized the swelling phenomenon caused by soaking the polymer foam in a proper organic solution to increase the ligament thickness and its porosity. As a result, the ligament thickness and porosity of finished products can be easily tailored. Using different polymer foams from various suppliers, we can make porous aluminums whose ligament thickness is in the range of 0.117∼0.458mm and porosity about 90∼95%.
    In the ceramic ball preform method, we found a special formula(weight ratio of Al2O3:bentonite:HPMC:water:PVA is 100:1:2:48.3:2.4) for making ceramic balls with sufficient strength to survive the casting procedures. These ceramic balls of several mm in size, can be easily removed from the finished products by high pressure water after casting. One of the ingenuity of this procedure lies in the fact that these ceramic balls are soft and deformable at room temperature. For this reason, we can apply pressure to increase the compactness of the packed bed made of these ceramic balls. As a result, the porosity the finished products can be substantially increased. On the other hand, the uniformity of the product can be improved if regular packing technique was employed rather than the random packing method. On the average, the porosity of the product is in the range of 80∼89%.

    壹、前言 貳、文獻回 2-1消失模鑄漿法 2-1-2石膏模的製備 2-2鹽顆粒澆鑄成型法 2-3金屬沈積法 2-4金屬泥漿發泡法 2-5金屬粉末冶金法 2-6鋁湯發泡法 2-7塑膠發泡成形法 2-8多孔金屬之機械性質 參、實驗 3-1試藥與材料 3-2儀器與設備 3-3實驗方法及流程 3-3-1消失模鑄漿法 3-3-1-1高分子泡綿基本性質之量測 3-3-1-2消失模鑄漿製程 3-3-1-3高分子泡綿骨架結構之增厚 3-3-1-4規則形狀散熱裝置之製程 3-3-2壓鑄成型法 3-3-2-1陶瓷球顆粒壓鑄成型法 3-3-2-1-1陶瓷球顆粒的製備 3-3-2-1-2陶瓷球粒子球磨效果 3-3-2-1-3單顆陶瓷球壓縮性質之探討 3-3-2-1-4陶瓷球預型體的製備 3-3-2-1-5單層陶瓷球堆積方式與壓縮性質之探討 3-3-2-1-6壓鑄程序 3-3-3散熱效果量測 3-3-4機械性質量測 肆、結果與討論 4-1消失模鑄漿製程 4-1-1高分子泡綿基本性質之量測 4-1-2泡綿增厚效果 4-1-3石膏粉末的選用 4-1-4高分子消失模鑄漿製程 4-1-5規則形狀散熱裝置 4-2壓鑄成型法 4-2-1陶瓷球粒子壓鑄成型法 4-2-1-1陶瓷球粒子的製備 4-2-1-2陶瓷球粒子球磨效果 4-2-1-3單顆陶瓷球壓縮性質之探討 4-2-1-4單層陶瓷球壓縮性質之探討 4-2-1-5壓鑄程序之改善 4-2-1-6成型壓力與成品孔隙度的關係 4-2-1-7使用CMC或HPMC對成品的效應 4-2-1-8預型體填充顆粒粒徑與成品孔隙度關係 4-3熱傳效果量測 4-4機械性質量測 伍、結論 陸、參考文獻

    ● Ahlers, O., to Eska Medical Lubeck Medi. Gmbh & Company,〝Method of producing open-celled metal structures,〞U. S. Patent, 5,042,560 (1991).
    ● Aizava, T., T. Natori, M. Hayashi and T. Tanaka, to Hitachi Ltd.,〝Method of forming three-dimensional network porous metallic structure having continuous internal cavity,〞U. S. Patent, 4,235,277 (1980).
    ● Andrews, E., W. Sanders, L.J. Gibson, 〝Compressive and Tensile Behaviour of Aluminum Foams,〞Materials Science and Engineering A, vol 270, pp 113-124 (1999).
    ● Banhart, J. and J. Baumeister, 〝Deformation Characteristics of Metal Foams,〞Journal of materials science, vol. 33, pp 1431-1440 (1998).
    ● Carter, V. E.,〝Metallic coatings for corrosion control,〞London (1977).
    ● Davies, G. J. and Shu Zhen,〝Review metallic foams : their production, properties and applications,〞Journal of Materials Science, 18, p1899~1911 (1983).
    ● Drolet, J. P.,〝Low density foams produced from aluminum powders,〞The International Journal of Powder Metallurgy & Powder Technology, 13(3), p221~225 (1977).
    ● Elliott, J. C., US Patent 2751289 (1956).
    ● Gibson, L. J. and M. F. Ashby, 〝Cellular solids,〞New York, USA (1998).
    ● Han, F. S., Z. G. Zhu and J. C. Gao, 〝Compressive Deformation and Energy Absorbing Characteristic of Foamed Aluminum,〞Metallurgical and Materials Transactions A, vol 29, pp 2497-2502 (1998).
    ● Kanahashi, H., T. Mukai, Y. Yamada, K. Shimojima and M. Mabuchi, 〝Dynamic Compression of an Ultra-low Density Aluminum Foam,〞Materials Science and Engineering A, vol. 280, pp 349-353 (2000).
    ● Ma, L. Q. and Z. L. Song, 〝Cellular structure control of aluminum foams during foaming process of aluminum melt,〞Scripta Materialia, 39(11), pp1523~1528 (1998).
    ● Ma, L. Q., Z. L. Song and D. He , 〝Cellular structure controllable aluminum foams produced by high pressure infiltration process,〞Scripta Materialia, 41(7), pp 785~789 (1999).
    ● Nagata, S., K. Kanaiwa and T. Ichikawa,〝Method for the preparation of a spongy metallic body,〞U.S. Patent, 4,556,096 (1985).
    ● Niebylski, L. M., C. P. Charema and T. E. Lee, US Patent 3743353 (1974)
    ● Nieh, T. G., J. H. Kinney and J. Wadsworth, 〝Morphology and elastic properties of aluminum foams produced by a casting technique,〞Scripta Materialia, 38(10), pp1487∼1494 (1998).
    ● Sosnik A., US Patent 2434775 (1948).
    ● Thiele, W., Metals and Materials, vol. 6, pp 349, 1972
    ● Thornton, P. H. and C. L. Magee, 〝The Deformation of Aluminum Foams,〞Metallurgical Transactions A, vol 6, pp1253-1263 (1975).
    ● Tracey, V. A.,〝Porous Materials:Current and Future Trends,〞The International Journal of Powder Metallurgy & Powder Technology, Vol. 12, No. 1, pp 25-35 (1976).
    ● Waltz, D. D., to Energy Research and Generation Inc.,〝Reticulated foam structure,〞 U. S. Patent, 3,946,039 (1976).
    ● Yamada, Y., K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura and T. Asahina,〝Processing of an open—celllular AZ91 magnesium alloy with a low density of 0.05g/cm3,〞Journal of materials Science letters 18, pp1477 ~1480 (1999).
    ● Zhao, Y. Y. and D. X. Sun,〝A novel sintering-dissolution process for manufacturing Al foams,〞Scripta materialia, Vol. 44, Iss 1, pp 105~110 (2001).
    ● 于敦德,〝鑄造用模型製作法,〞三民書局股份有限公司, 台北 (1986)
    ● 日本鑄物協會精密鑄造研究部會,〝精密鑄造技術,〞賴耿陽譯著, 復漢出版社, 台北 (1983).
    ● 吳舜英, 徐敬一,〝塑膠發泡成形技術,〞化學工業出版社, 北京 (1997)。
    ● 陳信文, 李正德, 徐立銘, 周更生, 呂世源,〝製備多孔金屬的方法,〞Patent pending (2000)。
    ● 楊錦成, 工業技術研究院工業材料研究所研究員, 私下訪談 (1999)。
    ● 楊錦成, 〝多孔質金屬材料-發泡鋁的製作與應用技術,〞工業材料 145期, pp 91-98 (1999)。
    ● 趙文瑞, 〝多孔陶瓷支撐材之壓製及其孔洞特性研究,〞清華大學化工系碩士論文 (1995)。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE