簡易檢索 / 詳目顯示

研究生: 謝景智
Hsieh, Ching-Chih
論文名稱: 含奈米碳管之矽膠填充氮化鋁機械及熱性質研究
Mechanical and Thermal Properties of AlN Reinforced Silicone Rubber with Carbon Nanotubes
指導教授: 葉孟考
Yeh, Meng-Kao
戴念華
Tai, Nyan-Hwa
口試委員: 蔡佳霖
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 67
中文關鍵詞: 熱傳導係數氮化鋁奈米碳管
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著積體電路製程技術的不斷進步,電子元件趨向小體積與高功率,熱能的產生也隨之增加,因此各種導熱材料不斷被研發,期望達到提升散熱的目的。奈米碳管具有高熱導性,適合作為熱導提升之強化材,而高分子材料具有質輕、價格便宜及易塑形等優點,結合二者的優勢可能成為未來功能性熱導材料的主流。
    本研究分別以溶液摻混與加壓滲透製程,在矽膠基材中填充不同比例之氮化鋁及多壁奈米碳管製成導熱墊,以了解不同製程和不同比例之填充粉體對矽膠基材熱性質影響。使用有限單元分析軟體ANSYS分析試片等效熱傳導係數,分別建立二維和三維模型,比較不同粉體形狀與粉體數目對模擬結果之影響,並以Maxwell、Bruggeman、Cheng-Vachon模型計算等效熱傳導係數後與實驗結果比較。接著量測試片熱穩定性與機械性質,以了解試片適合的運作環境。最後以場發射掃描式電子顯微鏡觀察試片中粉體分布情形,以了解粉體間是否形成有效的傳熱途徑。


    摘要 Abstract 誌謝 目錄 圖表目錄 第一章 緒論 1.1. 研究動機 1.2. 文獻回顧 1.1. 研究主題 第二章 有限單元與數據分析 2.1. 有限單元分析 2.2. 熱傳分析原理 2.3. 熱傳導係數分析模型 2.4. 等效熱傳導係數理論 2.5. 實驗數據統計分析 第三章 實驗設備與程序 3.1. 實驗設備 3.1.1. CVD系統 3.1.2. 攪拌機 3.1.3. 超音波振盪機 3.1.4. 真空烘箱 3.1.5. 熱風循環烤箱 3.1.6. 熱壓機 3.1.7. 雷射閃光法熱傳導係數分析儀 3.1.8. 熱分析儀 3.1.9. 場發射掃描式電子顯微鏡 3.1.10. 拉伸試驗機 3.2. 組成材 3.2.1. 矽膠 3.2.2. 氮化鋁 3.2.3. 奈米碳管 3.3. 試片製作 3.3.1. 前處理 3.3.2. 熱壓硬化 3.4. 試片微結構 3.5. 熱傳導係數量測 3.6. 熱重分析 3.7. 機械性質量測 第四章 結果與討論 4.1. 試片微結構 4.2. 熱傳導係數量測 4.3. 等效熱傳導係數分析 4.3.1. 有限單元分析 4.3.2. 理論模型 4.4. 熱重分析 4.5. 拉伸試驗 第五章 結論 參考文獻 圖表

    [1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58, 1991.
    [2] K. T. Lau and D. Hui, “The Revolutionary Creation of New Advanced Materials-Carbon Nanotube Composites,” Composites Part B: Engineering, Vol. 33, pp. 263-277, 2002.
    [3] M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson and R. H. Baughman, “Strong, Transparent, Multifunctional, Carbon Nanotube Sheets,” Science, Vol. 309, pp. 1215-1219, 2005.
    [4] 陳伯毅,原子力顯微鏡探針懸臂樑彈簧常數及奈米碳管機械性質量測,博士論文,國立清華大學動力機械學系,新竹,2008。
    [5] E. T. Thostenson, Z. Ren, and T. W. Chou, “Advances in the Science and Technology of Carbon Nanotubes and Their Composites: a Review,” Composites Science and Technology, Vol. 61, pp. 1899-1912, 2001.
    [6] M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe and T. Shimizu, “Measuring the Thermal Conductivity of a Single Carbon Nanotube,” Physical Review Letters, Vol. 95, pp. 065502, 2005.
    [7] S. Berber, Y. K. Kwon and D. Tománek, “Unusually High Thermal Conductivity of Carbon Nanotubes,” Physical Review Letters, Vol. 84, pp. 4613-4616, 2000.
    [8] P. Gonnet, Z. Liang, E. S. Choi, R. S. Kadambala, C. Zhang, J. S. Brooks, B. Wang and L. Kramer, “Thermal Conductivity of Magnetically Aligned Carbon Nanotube Buckypapers and Nanocomposites,” Current Applied Physics, Vol. 6, pp. 119-122, 2006.
    [9] R. Fu, K. Chen, S. Agathopoulos and J. M. F. Ferreira, “Factors which Affect the Morphology of AlN Particles Made by Self-Propagating High-Temperature Synthesis (SHS)”, Journal of Crystal Growth, Vol. 296, pp. 97-103, 2006.
    [10] J. Haibo, K. Chena, Z. Heping, S. Agathopoulos, O. Fabrichnaya and J. M. F. Ferreira, “Direct Nitridation of Molten Al(Mg, Si) Alloy to AlN”, Journal of Crystal Growth, Vol. 281, pp. 639-645, 2005.
    [11] H. Kitagawa, Y. Shibutani and S. Ogata, “Ab-initio Simulation of Thermal Properties of AlN Ceramics”, Modelling and Simulation in Materials Science and Engineering, Vol. 3, pp. 521-531, 1995.
    [12] R. F. Gibson, Principles of Composite Material Mechanics, McGraw-Hill, New York, 1994.
    [13] J. N. Coleman, U. Khan, and Y. K. Gun’ko, “Mechanical Reinforcement of Polymers Using Carbon Nanotubes,” Advances Materials, Vol. 18, pp. 689-706, 2006
    [14] E. T. Thostenson, S. Ziaee and T. W. Chou, “Processing and Electrical Properties of Carbon Nanotube/Vinyl Ester Nanocomposites,” Composites Science and Technology, Vol. 69, pp. 801-804, 2009.
    [15] J. Wang, Z. Fang, A. Gu, L. Xu and F. Liu, “Effect of Amino-Functionalization of Multi-Walled Carbon Nanotubes on the Dispersion with Epoxy Resin Matrix,” Applied Polymer Science, Vol. 100, pp. 97-104, 2006.
    [16] Y. Breton, G. Desarmot, J. P. Salvetat, S. Delpeux, C. Sinturel and F. Beguin, “Mechanical Properties of Multiwall Carbon Nanotubes/Epoxy Composite:Influence of Network Morphology,” Carbon, Vol. 42, pp. 1027-1030, 2004.
    [17] K. T. Lau, M. Lu, C. K. Lam, H. Y. Cheung, F. L. Sheng and H. L. Li, “Thermal and Mechanical Properties of Single-Walled Carbon Nanotube Bundle-Reinforced Epoxy Nanocomposites:the Role of Solvent for Nanotube Dispersion,” Composites Science and Technology, Vol. 65, pp. 719-725, 2005.
    [18] A. A. Gallo, C. S. Bischof, K. E. Howard, S. D. Dunmead and S. A. Anderson, “Moisture resistant aluminum nitride filler for high thermal conductivity microelectronic molding compounds,” Electronic Components and Technology Conference, Vol. 46, pp. 335-342, 1996.
    [19] S. Shaikh, L. Li, K. Lafdi and J. Huie, “Thermal Conductivity of an Aligned Carbon Nanotube Array,” Carbon, Vol. 45, pp. 2608-2613, 2007.
    [20] J. Xu, K. M. Razeeb and S. Roy, “Thermal Properties of Single Walled Carbon Nanotube-Silicone Nanocomposites,” Journal of Polymer Science: Part B: Polymer Physics , Vol. 46, pp. 1845–1852, 2008.
    [21] L. C. Sim, S. R. Ramanan, H. Ismail, K. N. Seetharamu and T. J. Goh, “Thermal Characterization of Al2O3 and ZnO Reinforced Silicone Rubber as Thermal Pads for Heat Dissipation Purposes,” Thermochimica Acta, Vol. 430, pp. 155-165, 2005.
    [22] Y. Xu, G. Ray and B. Abdel-Magid, “Thermal Behavior of Single-Walled Carbon Nanotube Polymer-Matrix Composites,” Composites: Part A, Vol. 37, pp. 114-121, 2006.
    [23] Q. Mu and S. Feng, “Thermal Conductivity of Graphite/Silicone Rubber Prepared by Solution Intercalation,” Thermochimica Acta, Vol. 462, pp. 70-75, 2007.
    [24] W. Zhou, S. Qi, C. Tu and H. Zhao, “Novel Heat-Conductive Composite Silicone Rubber,” Journal of Applied Polymer Science, Vol. 104, pp. 2478-2483, 2007.
    [25] Y. Xu, D. D. L. Chung and C. Mroz, “Thermally Conducting Aluminum Nitride Polymer-matrix Composites,” Composites Part A-applied Science And Manufacturing, Vol. 32, pp. 1749-1757, 2001.
    [26] W. K. Yeung, T. T. Lam, S. Agathopoulos, S. Zhang and X. Song, “Second-order Finite Difference Approximation for Inverse Determination of Thermal Conductivity,” International Journal of Heat and Mass Transfer, Vol. 39, pp. 3685-3693, 1996.
    [27] B. A. Baltz and M. S. Ingber, “A Parallel Implementation of the Boundary Element Method for Heat Conduction Analysis in Heterogeneous Media,” Engineering Analysis with Boundary Elements , Vol. 19, pp. 3-11, 1997.
    [28] J. Zeng, R. Fu, S. Agathopoulos, S. Zhang and X. Song, “Numerical Simulation of Thermal Conductivity of Particle Filled Epoxy Composites, ”Journal of Electronic Packaging, Vol. 131, pp. 041006, 2009.
    [29] R. Nayak, P. T. Dora and A. Satapathy, “A Computational and Experimental Investigation on Thermal Conductivity of Particle Reinforced Epoxy Composites,” Computational Materials Science, Vol. 48, pp. 576-581, 2010.
    [30] J. K. Carson, S. J. Lovatt, D. J. Tanner and A. C. Cleland, “An Analysis of the Influence of Material Structure on the Effective Thermal Conductivity of Theoretical Porous Materials Using Finite Element Simulations,” International Journal of Refrigeration, Vol. 26, pp. 873-880, 2003.
    [31] ANSYS Release 12.1, ANSYS, Inc., PA, 2010.
    [32] R. D. Cook, D. S. Malkus, M. E. Pleshasnd and R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed., John Wiley & Sons, Inc., Danvers, 2002.
    [33] 康淵,陳信吉,ANSYS入門,全華科技圖書股份有限公司,台北,2003。
    [34] Y. A. Cengel, Heat and Mass Transfer: A Practical Approach, New York, 3rd ed., McGraw-Hill, 2007.
    [35] J. C. Maxwell, A Treatise on Electricity and Magnetism, New York, 3rd ed., Dover, 1954.
    [36] D. A. G. Bruggeman, “Calculation of Various Physics Constants in Heterogeneous Substances I. Dielectricity Constants and Conductivity of Mixed Bodies from Isotropic Substances,” Annalen Der Physik, Vol. 24, pp. 636-664, 1935.
    [37] S. C. Cheng and R. I. Vachon, “The Prediction of the Thermal Conductivity of Two and Three Phase Solid Heterogeneous Mixtures,” International Journal of Heat and Mass Transfer, Vol. 12, pp. 249-264, 1969.
    [38] D. W. Sundstrom and Y. D. Lee, “Thermal Conductivity of Polymers Filled with Particulate Solids,” Journal of Applied Polymer Science, Vol. 12, pp. 3159-3167, 1972.
    [39] J. W. Dally and W. F. Riley, “Experimental Stress Analysis,” New York, McGraw-Hill Inc., 1991.
    [40] 杜祥光,氮化鋁填充高導熱複合材料之開發研究,碩士論文,國立成功大學化學工程學系,台南,2004年。
    [41] ASTM E1461-07, “Standard Test Methods for Thermal Diffusivity by the Flash Method,” Annual Book of ASTM Standards, Vol. 14.02, 2008.
    [42] ASTM D412-06ae2, “Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers Tension,” Annual Book of ASTM Standards, Vol. 9.01, 2008.
    [43] A. Devpura, P. E. Phelan and R. S. Prasher, “Percolation Theory Applied to the Analysis of Thermal Interface Materials in Flip-chip Technology,” Proceedings of the Inter Society Conference on Thermal Phenomena, Vol. 1, pp. 21-28, 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE