研究生: |
李兆昌 Lee, Chao-Chang |
---|---|
論文名稱: |
穿膜胜肽TAT輔助蛋白質轉導系統之開發及其運用於彌補人類粒線體第一蛋白質複合體NDUFV2次單元缺陷之功效評估 Developing a TAT –mediated protein transduction system to rescue mitochondrial complex I deficiency caused by the defect of NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2) |
指導教授: |
高茂傑
Kao, Mou Chieh |
口試委員: |
林玉俊
Lin, Yu-Chun 張壯榮 Chang, Chuang-Rung |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 60 |
中文關鍵詞: | 粒線體 、人類粒線體第一蛋白質複合體 |
外文關鍵詞: | NDUFV2, TAT |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2) 是人類粒線體第一蛋白複合體(complex I)的一個次單元。它的基因坐落於細胞核的染色體上,而其蛋白質含有一個鐵硫中心N1a。N1a在complex I 中可能作為電子暫時的儲存場所,以防止過多的電子逸散至有氧的環境中而形成活性氧分子。NDUFV2目前已被證實與多種疾病有很大的關聯性,包括阿茲海默症及帕金森氏症。從HIV病毒中發現的蛋白質衍化而來的細胞穿膜胜肽transactivator of transcription (TAT),已經被成功的用來攜帶外來的融合蛋白穿過細胞的細胞膜,並且能保持原有蛋白的功能。在這篇研究中,我們試圖利用TAT輔助蛋白質轉導系統來開發出一種治療因NDUFV2缺陷所導致Complex I功能不足的方法。這方法是將兩個融合蛋白TAT-NDUFV2和NDUFV2-TAT分別在體外經由大腸桿菌大量生產,而後再利用TAT轉導系統將其帶入細胞之中,為多做比較,產生同樣融合蛋白的載體也利用轉染的方式使其直接在細胞內表現。結果顯示無論是外來的TAT-NDUFV2或NDUFV2-TAT,都能順利的進入細胞的粒線體當中,並能正確地與其他complex I次單元組合,這顯示TAT-NDUFV2 和NDUFV2-TAT可能具有治療NDUFV2相關疾病的效果。有趣的是,此兩種融合蛋白轉導後進入粒線體是不需要粒線體膜電位的參與。為了評估其運用於治療上的可行性,我們使用NDUFV2基因表現減量的細胞株(IF4)來進行實驗。結果顯示TAT-NDUFV2 與NDUFV2-TAT 不只能顯著的增進complex I的組裝,在complex I酵素功能的分析中,也顯示具有回復的效果,其整體細胞的氧氣消耗速率及粒線體的膜電位也有極大的提升。我們的發現證實了利用TAT輔助蛋白轉導系統來開發治療complex I功能缺失或其他粒線體相關的疾病之方法是極具潛力的。
NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2) is a nuclear-encoded subunit of human mitochondrial complex I. It contains a binuclear iron sulfur cluster N1a, and may play a role in temporary storage of excess electrons to prevent free radical production. Defects of NDUFV2 have been associated with Alzheimer's disease and Parkinson's disease. Cell-penetrating peptide derived from HIV-1’s transactivator of transcription (TAT) has been successfully applied as a carrier to bring fusion proteins into cells by crossing plasma membranes without compromising the biological function of proteins. In this study, we tried to develop a TAT-mediated protein transduction system to rescue complex I deficiency caused by NDUFV2 defects. Two fusion proteins (TAT-NDUFV2 and NDUFV2-TAT) were exogenously expressed and purified from E. coli for transduction of human cells. In addition, similar constructs were also generated and used in transfection studies for comparison. The results showed that both exogenous TAT-NDUFV2 and NDUFV2-TAT could be delivered into mitochondria and correctly assembled in complex I. Interestingly, the mitochondrial import of TAT-containing NDUFV2 was independent of mitochondrial membrane potential. To explore the therapeutic application of the developed system, a NDUFV2 knockdown cell line (IF4) generated in previous studies was applied for rescuing studies. Treating with TAT-NDUFV2 not only significantly improve the assembly of complex I in IF4 cells, but also partially rescue complex I functions both in the in-gel activity assay and the complex I enzymatic activity assay. In addition, the oxygen consumption rate and mitochondrial membrane potential of IF4 cells were also greatly increased. Similar results were also observed while IF4 cells were treated with NDUFV2-TAT. Our current findings suggest a great potential of applying the TAT-mediated protein transduction system for treatment of complex I deficiency and other mitochondrial disease.
1. Brown, G. C. (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochemical Journal 284 ( Pt 1), 1-13
2. DiMauro, S. (2007) Mitochondrial DNA medicine. Bioscience reports 27, 5-9
3. Smeitink, J., van den Heuvel, L., and DiMauro, S. (2001) The genetics and pathology of oxidative phosphorylation. Nature Reviews Genetics 2, 342-352
4. Balaban, R. S., Nemoto, S., and Finkel, T. (2005) Mitochondria, oxidants, and aging. Cell 120, 483-495
5. Lynn, S., Wardell, T., Johnson, M. A., Chinnery, P. F., Daly, M. E., Walker, M., and Turnbull, D. M. (1998) Mitochondrial diabetes: investigation and identification of a novel mutation. Diabetes 47, 1800-1802
6. Wallace, D. C. (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annual review of genetics 39, 359-407
7. Friedrich, T., and Bottcher, B. (2004) The gross structure of the respiratory complex I: a Lego System. Biochimica et biophysica acta 1608, 1-9
8. Brandt, U. (2006) Energy converting NADH : Quinone oxidoreductase (Complex I). Annual Review of Biochemistry 75, 69-92
9. de Coo, R., Buddiger, P., Smeets, H., Geurts van Kessel, A., Morgan-Hughes, J., Weghuis, D. O., Overhauser, J., and van Oost, B. (1995) Molecular cloning and characterization of the active human mitochondrial NADH:ubiquinone oxidoreductase 24-kDa gene (NDUFV2) and its pseudogene. Genomics 26, 461-466
10. Brandt, U. (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annual review of biochemistry 75, 69-92
11. Zu, Y., Di Bernardo, S., Yagi, T., and Hirst, J. (2002) Redox properties of the [2Fe-2S] center in the 24 kDa (NQO2) subunit of NADH:ubiquinone oxidoreductase (complex I). Biochemistry 41, 10056-10069
12. Hinchliffe, P., and Sazanov, L. A. (2005) Organization of iron-sulfur clusters in respiratory complex I. Science (New York, N.Y.) 309, 771-774
13. Kerscher, S., Benit, P., Abdrakhmanova, A., Zwicker, K., Rais, I., Karas, M., Rustin, P., and Brandt, U. (2004) Processing of the 24 kDa subunit mitochondrial import signal is not required for assembly of functional complex I in Yarrowia lipolytica. European journal of biochemistry 271, 3588-3595
14. Nishioka, K., Vilarino-Guell, C., Cobb, S. A., Kachergus, J. M., Ross, O. A., Hentati, E., Hentati, F., and Farrer, M. J. (2010) Genetic variation of the mitochondrial complex I subunit NDUFV2 and Parkinson's disease. Parkinsonism & related disorders 16, 686-687
15. Yagi, T., and Dinh, T. M. (1990) Identification of the NADH-binding subunit of NADH-ubiquinone oxidoreductase of Paracoccus denitrificans. Biochemistry 29, 5515-5520
16. Parikh, S., Saneto, R., Falk, M. J., Anselm, I., Cohen, B. H., Haas, R., and Soc, M. M. (2009) A modern approach to the treatment of mitochondrial disease. Current Treatment Options in Neurology 11, 414-430
17. Koene, S., and Smeitink, J. (2009) Mitochondrial medicine: entering the era of treatment. Journal of Internal Medicine 265, 193-209
18. DiMauro, S., Hirano, M., and Schon, E. A. (2006) Approaches to the treatment of Mitochondrial Diseases - Invited review. Muscle & Nerve 34, 265-283
19. Russell, O., and Turnbull, D. (2014) Mitochondrial DNA disease-molecular insights and potential routes to a cure. Experimental cell research 325, 38-43
20. Hashimoto, M., Bacman, S. R., Peralta, S., Falk, M. J., Chomyn, A., Chan, D. C., Williams, S. L., and Moraes, C. T. (2015) MitoTALEN: A General Approach to Reduce Mutant mtDNA Loads and Restore Oxidative Phosphorylation Function in Mitochondrial Diseases. Molecular therapy : the journal of the American Society of Gene Therapy 23, 1592-1599
21. Chandrasekaran, K., Anjaneyulu, M., Inoue, T., Choi, J., Sagi, A. R., Chen, C., Ide, T., and Russell, J. W. (2015) Mitochondrial transcription factor A regulation of mitochondrial degeneration in experimental diabetic neuropathy. American journal of physiology. Endocrinology and metabolism 309, E132-141
22. Cwerman-Thibault, H., Augustin, S., Lechauve, C., Ayache, J., Ellouze, S., Sahel, J. A., and Corral-Debrinski, M. (2015) Nuclear expression of mitochondrial ND4 leads to the protein assembling in complex I and prevents optic atrophy and visual loss. Molecular therapy. Methods & clinical development 2, 15003
23. Chin, R. M., Panavas, T., Brown, J. M., and Johnson, K. K. (2018) Optimized Mitochondrial Targeting of Proteins Encoded by Modified mRNAs Rescues Cells Harboring Mutations in mtATP6. Cell reports 22, 2818-2826
24. Polyakov, V., Sharma, V., Dahlheimer, J. L., Pica, C. M., Luker, G. D., and Piwnica-Worms, D. (2000) Novel Tat-peptide chelates for direct transduction of technetium-99m and rhenium into human cells for imaging and radiotherapy. Bioconjugate chemistry 11, 762-771
25. Green, M., and Loewenstein, P. M. (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55, 1179-1188
26. Fawell, S., Seery, J., Daikh, Y., Moore, C., Chen, L. L., Pepinsky, B., and Barsoum, J. (1994) Tat-mediated delivery of heterologous proteins into cells. Proceedings of the National Academy of Sciences of the United States of America 91, 664-668
27. Rizzuti, M., Nizzardo, M., Zanetta, C., Ramirez, A., and Corti, S. (2015) Therapeutic applications of the cell-penetrating HIV-1 Tat peptide. Drug discovery today 20, 76-85
28. Vives, E., Brodin, P., and Lebleu, B. (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. The Journal of biological chemistry 272, 16010-16017
29. Ruben, S., Perkins, A., Purcell, R., Joung, K., Sia, R., Burghoff, R., Haseltine, W. A., and Rosen, C. A. (1989) Structural and functional characterization of human immunodeficiency virus tat protein. Journal of virology 63, 1-8
30. van den Berg, A., and Dowdy, S. F. (2011) Protein transduction domain delivery of therapeutic macromolecules. Current Opinion in Biotechnology 22, 888-893
31. Trabulo, S., Cardoso, A. L., Mano, M., and De Lima, M. C. (2010) Cell-Penetrating Peptides-Mechanisms of Cellular Uptake and Generation of Delivery Systems. Pharmaceuticals (Basel, Switzerland) 3, 961-993
32. Richard, J. P., Melikov, K., Brooks, H., Prevot, P., Lebleu, B., and Chernomordik, L. V. (2005) Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. The Journal of biological chemistry 280, 15300-15306
33. Ben-Dov, N., and Korenstein, R. (2015) The uptake of HIV Tat peptide proceeds via two pathways which differ from macropinocytosis. Biochimica et biophysica acta 1848, 869-877
34. Rayapureddi, J. P., Tomamichel, W. J., Walton, S. T., and Payne, R. M. (2010) TAT fusion protein transduction into isolated mitochondria is accelerated by sodium channel inhibitors. Biochemistry 49, 9470-9479
35. Palm-Apergi, C., Lonn, P., and Dowdy, S. F. (2012) Do cell-penetrating peptides actually "penetrate" cellular membranes? Molecular therapy : the journal of the American Society of Gene Therapy 20, 695-697
36. Yamano, S., Dai, J., Yuvienco, C., Khapli, S., Moursi, A. M., and Montclare, J. K. (2011) Modified Tat peptide with cationic lipids enhances gene transfection efficiency via temperature-dependent and caveolae-mediated endocytosis. Journal of controlled release : official journal of the Controlled Release Society 152, 278-285
37. Tunnemann, G., Martin, R. M., Haupt, S., Patsch, C., Edenhofer, F., and Cardoso, M. C. (2006) Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 20, 1775-1784