簡易檢索 / 詳目顯示

研究生: 陳愷謙
Chen, Kai-Chien
論文名稱: 最終訂單問題的備料需求預測
Spare Parts Demand Forecasting in the Final Order Problem
指導教授: 李育杰
Lee, Yuh-Jye
口試委員: 徐南蓉
Hsu, Nan-Jung
黃文瀚
Hwang, Wen-Han
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 42
中文關鍵詞: 最終訂單問題備料需求預測移動平均隨機森林演算法
外文關鍵詞: the final order problem, spare part, demand forecasting, moving average model, random forest algorithm
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 售後服務為現今越來越重要的一個議題。為了提供好的售後服務給客戶,
    公司需要確保備料的存量能讓維修服務正常運作。
    在產品停產之後,相對應的料件也會停止供應,在供應截止之前,供應商
    會給公司最後一次下單的機會。最終訂單的時間範圍包括一年保固、兩年保修
    以及四個月的緩衝,總共四十個月。我們提供的模型提供最終定單未來四十個
    月的預測用量。
    模型中以移動平均的概念結合隨機森林演算法引入近期的資訊,讓預測更
    為準確。比起傳統用於預測需求量移動平均的方法,有顯著的進步。


    After-sales service is an increasingly important issue nowadays. In order to
    provide their customers good after-sales service, companies need to ensure the
    amount of spare parts needed in maintenance service.
    After the product ends its manufacturing, the corresponding parts are not
    available for ordering. The suppliers give the last chance to the company to order
    spare parts before the end of the supply. The time horizon of the final order
    includes a three-year warranty and a four-month buffer, a total of forty months.
    Our model predicts the demand of the final order over the next forty months.
    The model combines the concept of the moving average model with random
    forest algorithm to introduce the latest information, making the prediction more
    accurate. Compared with moving average, the conventional method for demand
    forecasting, the prediction of our model progresses significantly.

    1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Literature Review 3 2.1 Characteristics of Spare Part . . . . . . . . . . . . . . . . . . . . . 3 2.2 Demand Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Final Order Problem . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Aggregation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.1 Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.2 Random Forest Algorithm . . . . . . . . . . . . . . . . . . . 9 3 Methodology 11 3.1 Problem Definition and Assumption . . . . . . . . . . . . . . . . . . 11 3.2 Repair Data Description . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.1 Short-term Prediction . . . . . . . . . . . . . . . . . . . . . 14 3.3.2 Long-term Prediction . . . . . . . . . . . . . . . . . . . . . 17 3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 Real Data Analysis 24 4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 Model Fitting and Evaluation . . . . . . . . . . . . . . . . . . . . . 25 5 Conclusion and Future Work 33 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 References 35 Appendix 37

    [1] Yaser S Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning
    from data, volume 4. AMLBook New York, NY, USA:, 2012.
    [2] Frank M Bass. A new product growth for model consumer durables. Management
    science, 15(5):215–227, 1969.
    [3] James R Bradley and Héctor H Guerrero. Product design for life-cycle mismatch.
    Production and Operations Management, 17(5):497–512, 2008.
    [4] Kyle D Cattani and Gilvan C Souza. Good buy? delaying end-of-life purchases.
    European Journal of Operational Research, 146(1):216–228, 2003.
    [5] Morris A Cohen, Narendra Agrawal, and Vipul Agrawal. Winning in the
    aftermarket. Harvard business review, 84(5):129, 2006.
    [6] Leonard Fortuin and Harry Martin. Control of service parts. International
    Journal of Operations & Production Management, 19(9):950–971, 1999.
    [7] Karl Inderfurth and Kampan Mukherjee. Analysis of spare part acquisition
    in post product life cycle. Univ., FEMM, 2006.
    [8] WJ Kennedy, J Wayne Patterson, and Lawrence D Fredendall. An overview
    of recent literature on spare parts inventories. International Journal of production
    economics, 76(2):201–215, 2002.
    [9] Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest.
    R news, 2(3):18–22, 2002.
    [10] MG Pecht and Diganta Das. Electronic part life cycle. IEEE Transactions
    on Components and Packaging Technologies, 23(1):190–192, 2000.
    [11] Morteza Pourakbar, JBG Frenk, and Rommert Dekker. End-of-life inventory
    decisions for consumer electronics service parts. Production and Operations
    Management, 21(5):889–906, 2012.
    [12] Sebastian Raschka. Python machine learning. Packt Publishing Ltd, 2015.
    [13] Richard Webby and Marcus O’Connor. Judgemental and statistical time
    series forecasting: a review of the literature. International Journal of forecasting,
    12(1):91–118, 1996.
    [14] Steven C Wheelwright, Spyros G Makridakis, et al. Forecasting methods for
    management. 1973.

    QR CODE