簡易檢索 / 詳目顯示

研究生: 陳煜仁
論文名稱: 以溶膠凝膠法製備含二維發色團之非線性光學材料及其電光特性研究
Electro-optical Research of NLO Material with Reactive 2D Chromophore Prepared by Sol-Gel
指導教授: 薛敬和
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 116
中文關鍵詞: 非線性光學溶膠/凝膠二氧化矽高分子網狀結構二維發色團
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以二維發色團9-Hexyl-3,6- di(2’-(6-hydroxyhexyl) sulfonylphenyl)-1’-ethenyl)-9H-carbazole (Cz2PhSO2OH)及一維發色團4-N,N-Bis(2-hydroxyethylene) amine -4’- nitroazobenzene (DR19) 進行反應型溶凝膠反應,比較維度對非線性光學穩定性的影響。並以二維發色團9-Hexyl-3,6-di(2-(6-hexyl) sulfonyl phenyl)-1’-ethenyl) -9H– carbazole (Cz2PhSO26C)與Cz2PhSO2OH比較賓主型及反應型對二維發色團在無機基材中穩定性的影響。實驗結果證實反應型二維發色團溶/凝膠系統於二氧化矽高分子網狀結構的補強下,時間及動態熱穩定性有大幅提升的現象,於100℃下無SHG訊號衰退。並透過固態矽譜得知,在二維反應型溶/凝膠系統中,有效轉移溫度(T0)會隨溫度及時間的增加而提升,然而,二階諧波係數(d33)卻有一最適值;另外,經由極化條件的控制,使二維及一維發色團在相同交聯程度條件下進行反應,結果顯示二維反應型溶/凝膠系統的動態熱穩定性(T0=110℃)明顯較一維反應型溶/凝膠系統(T0=80℃)高。而且,此兩系統在各自的有效轉移溫度下觀察其隨時間變化的鬆弛行為,二維系統維持的有效二階諧波係數(65%)較一維系統(30%)的多;再者,二維賓主型溶/凝膠系統在極化過程中會發生昇華現象,這是由於發色團與基材無化學鍵結作用力。


    Two dimensional (2D) chromophore, 9-Hexyl-3,6-di (2’-(6-hydroxy hexyl)sulfonylphenyl)-1’-ethenyl)-9H-carbazole(Cz2PhSO2OH), and one dimensional (1D) chromophore 4-N,N-Bis(2- hydroxy ethylene) amine-4’- nitroazobenzene (DR19) with two reactive site proceeded sol-gel process were studied to compare the effects between dimension of chromophore and nonlinear optical (NLO)stability. Hybrid NLO film with another 2D chromophore,9-Hexyl-3,6-di(2’-(6-hexyl)sulfonylphenyl)-1’-ethenyl) -9H– carbazole (Cz2PhSO26C) ,was studied to compare the influence between physical and chemical bonding. The results show that due to the reinforcement of SiO2 polymeric structure , hybrid NLO films with covalent-bonded 2D chromophore were highly improved in temporal and thermal dynamic stability. There is no decay in second harmonic coefficient (d33) at 100℃ for 200 hr. Effective transition temperature (T0) was raised with the enhancement of temperature and time by means of increasing degree of cross-linking , though d33 owns an optimal value. Moreover, by controlling the poling condition, the degree of cross-linking of SiO2 matrix with 2D and 1D chromophore is identical. As for thermal dynamic stability, NLO films with 2D chromophore (T0 = 110℃) are obviously better than with 1D chromophore (T0 = 80℃). As for temporal stability, effective second order harmonic coefficient (deff) of NLO film with 2D chromophore (65%) is better than with 1D chromophore (30%) under individual effective transition Temperature. For hybrid NLO film, the 2D chromophore would be sublimed during poling process since no chemical bondings between chromophore and matrix.

    摘 要 i Abstract ii 目 錄 iii 圖 目 錄 v 表目錄 viii 第一章 非線性光學簡介 1 1-1前言 1 1-2非線性光學的起源 2 1-3非線性光學材料應用元件 3 第二章 文獻回顧 5 2-1非線性光學理論 5 2-2非線性光學(NLO,Nonlinear optics)材料 11 2-2-1發色團分子設計概念 12 2-2-2 二維發色團相關研究 17 2-2-3 Λ型2維發色團相關研究 21 2-3 溶膠/凝膠簡介與其反應原理 28 2-4溶膠/凝膠法(Sol-gel)製備之NLO材料 34 2-5研究動機 40 第三章 實驗部份 42 3-1研究系統 42 3-2研究架構 43 3-3試藥 44 3-4物性檢測 46 3-5材料合成 48 3-6 合成流程圖 56 3-7反應型與賓主型有機/無機混合NLO材料之製備 59 3-8二次非線性光學特性檢測 60 3-8-1有機無機混合薄膜之配向極化 60 3-8-2二次非線性光學量測儀器裝置簡介 61 3-9 29Si 核磁共振光譜解析 62 第四章 結果與討論 64 4-1含矽氧烷基發色團的合成與化學結構鑑定 64 4-2溶凝膠NLO材料熱性質分析 73 4-3表面形態學分析 77 4-4溶凝膠反應過程之化學結構分析 78 4-4-1液態矽核磁共振光譜(liquid state 29Si-NMR) 78 4-4-2固態矽核磁共振光譜(solid state 29Si-NMR) 80 4-4-3二維反應型溶凝膠NLO材料極化後的組成結構變化 83 4-4-4二維賓主型溶/凝膠NLO材料極化後的組成結構變化 85 4-5非線性光學性質的探討 87 4-5-1二維反應型溶/凝膠非線性光學系統 87 4-5-2一維反應型溶/凝膠非線性光學系統 100 4-5-3 二維賓主型溶/凝膠非線性光學系統 104 第五章 結論 109 第六章 參考文獻 111

    (a)D. H. Choi, J. H. Park,T. H. Rhee, N. Kim, S.D. Lee, Chem. Mater. 1998, 10, 705 (b)W. J. Kuo1, M.C. Chang, T.Y. Juang, C.P. Chen,C.T. Chen, H. L. Chang , R. J. Jeng,Polym. Adv. Technol. 2005; 16: 515 (c)Y .C., G. Qian, L. Chen, Z. Wang, J. Gao, M. Wang,J. Phys. Chem. B, 2006, 110, 4105 (d)L. Chen, G. Qian,Y. Cui, X. Jin, Z. Wang, M. Wang,, J. Phys. Chem. B 2006, 110, 19176
    R. S. Finn, J. F. Ward, J. Chem. Phys. 1974, 60, 454.
    P. D. Southgate, Appl. Phys. Lett. 1976, 28, 250.
    A. Dulcic, and C. Sauteret, J. Chem. Phys. 1978, 25, 402.
    J. L. Oudar, J. Chem. Phys. 1977, 67, 446
    J. L. Oudar, D. S. Chemla, Chem. Phys, 1977, 66, 2664
    J. F. Ward, I. J. Bigio, Phys. Rev. 1975, A 11, 60.(b) A. Duclic, C. Flytzanis, C. L.
    Tang, D. Pepin, M. Fitzon, Y. Hoppiliard, J. Chem. Phys, 1981, 74, 1559 (c) J.
    Wang, M. Lu, Y. Pan, Z. Peng, J. Org.Chem. 2002, 67, 7781
    S. Ohnishi, F. L. Gu, K. Naka, A. Imamura, B. Kirtman, Y. Aoki, J.Phys. Chem. A.
    2004, 108, 8478
    J. D. Morley, V. J. Docherty, and D. Pugh, J. Chem. Soc. Perkin.Trans.1987, 2, 1357
    G. Berkovic, Y. R. Shen, M. Schadt, Mol. Cryst. Liq. Cryst. B 1987, 150, 607.
    A.Galvan-Gonzalez, K. D. Belfield, G. I. Stegeman, M. Canva, S. R. Marder, K.
    Staub, G. Levinna, R. j. Twieg, J. Appl. Phys. 2003, 94, 756
    (a) P. A. Sullivan, S. Bhattacharjee, B. E. Eichinger, K. Firestone, B. H. Robinson,
    L. R. Dalton, SPIE Proc. 2004, 5351, 253. (b) A. Qin, Z. Yang, F. Bai, C. J. Ye,
    Polym. Sci., Part A 2003, 41, 2846. (c) H. Kang, S. Li, P. Wang, W. Wu, C. Ye,
    Synth. Met. 2001, 121, 1469. (d) P. Wang, P. Zhu, W. Wu, H. Kang, C. Ye, Phys. Chem. 1999, 1, 3519.
    (a) M. Yang, B. J. Champagne, Phys. Chem. A 2003, 107, 3942 (b) V. Ostroverkhov, R. G. Petschek, K. D. Singer, R. J. Twieg, Chem.Phys. Lett. 2001, 340, 109. (c) S. Van Elshocht, T. Verbiest, M. Kauranen, L. Ma, H. Cheng, K. Musick, L. Pu, Persoons, A. Chem. Phys. Lett. 1999, 309, 315. (d) M. S. Wong, J. F. Nicoud, C. Runser, A. Fort, M. Barzoukas, E. Marchal, Chem. Phys. Lett. 1996, 253, 141.(e) H. C. Tsai , W. J. Kuo, G. H. Hsiue, Macromol. Rapid Commun. 2005, 26, 986(f) W. J. Kuo, G. H. Hsiue, R. J. Jeng, Macromol. Rapid Commun. 2001, 22,601
    (a) Traber, B.; Wolff, J. J.; Rominger, F.; Oeser, T.; Gleiter, R.; Goebel, M.; Wortmann, R. Chem. Eur. J. 2004, 10, 1227. (b) Wolff, J J.; Segler, F.; Matschiner, R.; Wortmann, R. Angew. Chem., Int. Ed. 2000, 39, 1436.
    (a) W. J. Kuo, G. H. Hsiue, R. J. Jeng, Macromolecules 2001, 34, 2373. (b) H. Yamamoto, S. Katogi, T. Watanabe, , H. S. SatoMiyata, T. Hosomi, Appl. Phys. Lett. 1992, 60, 935
    H. Kang, P. Zhu, Y. Yang, A.Facchetti, J. M .Tobin, JACS communications,
    2004,126,15974
    Z. Yang, A. Qin , S. Zhang , C. Ye, European Polymer Journal, 2004 ,40,1981
    J. Y. Lee and W. T. Jung, B. K .Rhee, Journal of Nonlinear Optical Physics & Materials, 2005, 14, 341
    I. Asselberghs, G. Hennrich, K. Clays, J. Phys. Chem. Part A ,2006, 110, 6271
    G. de la Torre, P. Va´zquez, F. A. Lo´pez, T. Torres, Chem. Rev. 2004, 104, 3723
    J. Zyss, J. L. Oudar, Phys. Rev. A, 1982, 26, 2016
    M.J.S. Dewar, E. G. Zoevisch, E. F. Healy, J. P. Stewart,J. Am. Chem. Soc.,1985,107, 3092
    H.Yamamoto,S. Katogi, T. Watanabe, H. Sato, and S. Miyata, Appl. Phys. Lett., 1992,8,60.
    H. Yamamoto, S. Katogi, T. Watanabe, H.Sato, S. Miyata, T.Hosomi, Appl. Phys. Lett. 1992, 60, 8, 935.
    J. D. Stenger-Smith, P. Zarras, R. A. Hollins, A. P. Chafin, L. H. Merwin, R. Yee, G. A. Lindsay, W. N. Herman, R. F. Gratz, E. G. Nickel, J. Polym. Sci., Part A: Polym. Chem. 1993, 2824.
    Y. Zhang, L. Wang, T. Wada, H. Sasabe, Macromolecules 1996, 29, 1569
    (a) W. J. Kuo, G. H. Hsiue, R. J. Jeng, J. Mater. Chem.
    2002, 12(4), 868 (b)W. J. Kuo, G. H. Hsiue, R. J. Jeng, Macromol.
    Chem. Phys. 2001, 202(9), 1782.
    (a) V. Ostroverkhov, Rg Petschek, K. D. Singer, R. J. Twieg, Chemical Phys. Lett. , 2001,340,109 (b) H. Ma, A. K. Y.Jen, L. R. Dalton, Advan. Mater., 2002,14, 1339
    M. Yang , B. Champagne, J. Phys. Chem. A ,2003, 107, 3942
    A. Qin, F. Bai, C. Ye, Journal of Molecular Structure (Theochem) ,2003 ,631, 79
    M. A. Hubbard, N. Minami, C. Ye, T. J. Marks, J. Yang, G. K. Wong, Proc.
    SPIE ,1988, 971, 136.
    D. R. Robello, C. S. Wiland, M. Scozzafava, A. Ullman, D. J. Williams, In
    Materials for Nonlinear Optics. Chemical Persprctiues; ACS Symposium Series
    455; Marder, S. R., Sohn, J. E.. Stucky, G. D., Eds.; American Chemical Society:
    Washington, DC, 1991: p 279.
    陳鴻仁╱光連雙月刊,第38 期╱2002
    (a)C.K. Brinker, G. W. Scherer, “Sol-Gel science”, Acadamic press,2,1990(b)蔡奇哲,”以溶膠凝膠法製備低介電PTFE-SiO2基板材料性質之研究”,國立清華大學化學工程系碩士論文民國92年
    S. Gerhard Chem. Mater. 2001, 13, 3422
    A. L. Douglas, J. S. Kenneth, Chem. Rev. 1995,95.1431
    F. Chaumel, H. Jiang, A. Kakkar ,Chem. Mater.2001, 13, 3389
    P. Griesmar, C. Sanchez G. Pucetti, I. Ledoux, J. Zyss, Molec. Eng,1991, 1, 205
    E. Toussaere, J. Zyss, P. Griesmar, C Sanchez, nonlinear optics, 1991,1,349
    R. J. Jeng, Y. M. Chen, A. K. Jain, S. K. Tripathy, J. Kumar,Opt. Commun,
    1992,89,212
    J. Kim, J. L. Plawski, E. Van Wagenen, G. M. Korenowski, Chem. Mater, 1993,
    5,1118
    R. J. Jeng, Y. M. Chen, A. K. Jain, J. Kumar, and S. K. Tripathy, Chem. Mater.
    1992,4,972
    H. Hayashi, H. Nakayama, O. Sugihara, N. Okamoto, OpticLetters,1995, 22, 2264
    H. Zhang, D. Lu, and M. Fallahi, Appl. Phys. Lett., 2004 , 84,1064
    H. X. Thang, D. Lu, N. Peyghambarian, J. D. Luo, B. Q. Chen, A. K. Y. Jen ,M.
    Fallahi, optics letter, 2005, 30, 117
    H. K. Kim, S. J. Kang, S. K. Choi, Y.H. Min, C. S. Yoon, Chem. Mater, 1999,11,
    779
    a) M. Chen, L. Yu, L. R. Dalton, Y. Shi, W. H. Steier, Macromolecules 1991, 24, 5421. (b) M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, W. H. Steier, Macromolecules 1992,25, 4032. (c) S. S. H Mao, Y. Ra, L. Guo, C. Zhang, L. R. Dalton, Chem. Mater. 1998, 10, 146.(d) A. W. Harper, S. S. H. Mao, Y. Ra, C. Zhang, J. Zhu, L. R. Dalton, Chem. Mater. 1999, 11, 2886
    C. Mutter , T.N.M. Bernards, M. P. J. Peeters, J. H. Lammers, M. R. BoÈhmer,
    Thin Solid Films 1999,351, 95
    (a)R. H. Glaser, G. L. Wilkes, C. E. J. Bronnimann, Non-Cryst.Solids 1989, 113, 73. (b) E. Lippmaa, M. Magi, A. Samoson, G. Engelhardt, A. R. Grimmer, J. Am. Chem. Soc. 1980, 102, 4889. (c) G. Engelhardt, H. Jancke, E. Lippmaa, A.Samoson, J. Organomet. Chem. 1981, 210, 295. (d) E. Lippmaa, A. Samoson, G. Engelhardt, A. R. Grimmer, J. Phys. Chem. 1984, 88, 1518.
    J. Kim, J.L. Plawsky, Elizabeth Van Wagenen, andGerald M. Korenowski, Chem.
    Mater. 1993,5, 111
    B. Lebeau,,S. Brasselet, J. Zyss, C. Sanchez,Chem. Mater. 1997, 9,1012
    H. Ma, B. chen, T.Sassa, L.R. Dalton,A.K.Y. Jen, J.Am. Chem. Soc. 2001,123,986
    (a) Z. Yang, C. Xu, B. Wu, L. R Dalton, S. Kalluri, W. H. Steier, Y. Shi, J. H. Bechtel, Chem. Mater. 1994, 6, 1899.(b) D. Reihl, F. Chaput, Y. Levy, J. P. Boilot, F. Kajzar, P. A. Chollet, Chem. Phys. Lett. 1995, 245, 36.(c) S. Kalluri, Y. Shi, W. Steier, Z. Yang, C. Xu, B. Wu, L. R.Dalton, Appl. Phys. Lett. 1994, 65 (21), 2651.
    C.Zhang, C. Wang, J. Yang, L. R.Dalton,Macromolecules,2001,34,235
    J. L. Oudar, J. Chim. Phys. 1977,67,446
    (a) M. Stahelin, C. Walsh, D. Burland, R. Miller, R. Twieg, and W.Volksen, J. Appl. Phys. 1993,73,8471 .(b)M. Stahelin, D. Burland, M. Ebert, R. Miller, B. Smith, R. Twieg,W. Volksen, and C. Walsh, Appl. Phys. Lett. 1992,61,1626 (c)S. Ermer, J. Valley, R. Lytel, G. Lipscomb, T. Van Eck, and D. Girton, Appl. Phys. Lett. 1992,61,2272. (d)W. J. Kuo, G. H. Hsiue, and R. J. Jeng, Macromolecules 2001,34,2373.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE