研究生: |
沈孟弘 Shen, Meng-Hung |
---|---|
論文名稱: |
用以提昇數位類比轉換器之線性度及減少其面積之技術研究 Linearity Enhancement and Area Reduction Techniques for CMOS Current-steering DACs |
指導教授: |
黃柏鈞
Huang, Po-Chiun |
口試委員: |
劉深淵
Liu, Shen-Iuan 洪浩喬 Hong, Hao-Chiao 李泰成 Lee, Tai-Cheng 黃元豪 Huang, Yuan-Hao 謝志成 Hsieh, Chih-Cheng 朱大舜 Chu, Ta-Shun |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 131 |
中文關鍵詞: | 數位類比轉換器 、校正 、動態元件匹配 |
外文關鍵詞: | digital-to-analog converter, calibration, dynamic element matching |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在探討如何在不影響線性度的情形下,降低高解析度電流切換式數位類比轉換器之面積與製作成本。我們分別提出兩種方式來改善。第一種方式採用新型的自我校正來補償故意縮小的電流源所導致的電流誤差。兩條閉迴路回授系統能分別偵測及校正平均偏移電流以及其餘的不匹配電流。由於大部分的校正的過程都是利用數位訊號處理,此方法可以容易被應用在其餘高解析度的數位類比轉換器,尤其是在數位電路比類比電路佔有優勢的深次微米世代裡。我們以一個十二位元數位類比轉換器來驗證我們所提出的方法,它採用90nm CMOS製程,核心面積是0.18 mm^2。量測到的DNL及INL分別為0.26 LSB及0.42 LSB。在400-MS/s的操作頻率下,在30MHz的頻寬內能維持59dB以上的無雜訊動態範圍(SFDR)。第二種方式採用動態元件匹配技術(DEM)。傳統的DEM技巧雖然能有效提昇SFDR,但常因需要額外的元件切換而導致嚴重的突波問題。我們提出一個新型的DEM方法來達成最小的元件切換,稱為隨機交換式溫度計編碼技術(Random Swapping Thermometer Coding, RSTC)。它保有了隨機(randomization)及連續選擇(consecutive selection)兩種特性,並且實現電流源的最小切換,使得突波能量可以跟溫度計解碼器的數位類比轉換器一樣小。此外我們也提出了限制跳躍(restricted jumping)的技術來改善低頻諧波的問題。我們將這個方法應用在一個十四位元的數位類比轉換器。採用55nm CMOS製程,此數位類比轉換器的核心面積為0.28 mm^2,電流源僅有相當於十位元的匹配效果。量測結果在100MS/s的操作頻率下,低頻的SFDR可由62dB提升到79dB。
This thesis investigates the techniques to reduce the silicon area of CMOS current-steering digital-to-analog converters (DACs) without compromising the circuit linearity. Conventional high-resolution DACs have to pay a penalty of large-size transistors to get better matching characteristics, thereby increasing the fabrication cost. In this thesis, two methods are proposed to achieve low-cost and high-resolution current-steering DACs.
A self-correction method is developed in the first work. To minimize the area, the transistor size of current source array is reduced deliberately. This shrink will corrupt the DAC linearity performance. With the assistance of a current comparator, a calibration DAC (CalDAC) and calibration logics, two calibration loops are employed to estimate the current mismatches. Since all calibration processes work in the digital domain, the overhead for analog circuit is minimized. In the meanwhile, the proposed methodology can be easily ported to other high-resolution current-steering DACs, especially for deep-submicron processes. We designed a
12-bit video DAC prototype to demonstrate the proposed scheme. Experiment results show the proposed method reduces the DNL and INL to 0.26 and 0.42 LSB, which guarantees 12-bit linearity. At 400-MS/s update rate, the spurious-free dynamic range is above 59 dB within a 30-MHz bandwidth, which corresponds to the signal bandwidth for HDTV applications. This prototype occupies only 0.18mm^2 die area including all calibration functions in a standard 90-
nm CMOS technology.
Besides the calibration, dynamic element matching (DEM) is another effective method to increase the spurious free dynamic range of DACs. The second work describes a new DEM
method called Random Swapping Thermometer Coding (RSTC). The direction selected for a sequence of unit current sources will be randomly changed. Combining this method with the restricted jumping technique the low-frequency idle tones can be mitigated. This approach minimizes the number of switched elements and transient glitches as code changes, while achieving good spectrum purity as other DEM implementations. This method is applied to a 14-bit current-steering DAC with a 4+4+6 double-segmented structure. The first four bits (MSB) and the middle four bits (ULSB) are converted into thermometer codes and employ the proposed RSTC algorithm, which can relax the matching requirement on current cells. The test chip draws 70mW from the supplies with 20mA full-scale current, and occupies only 0.28 mm^2 active area in a standard 55-nm CMOS process. From measurement results of the test chip, it
has been shown to display only 10-bit static linearity with INL around 16LSB. The dynamic performance obtained after applying RSTC algorithm is enhanced from 62dB to 79dB at low
frequencies for a 100MHz sampling clock.
[1] J. Bastos, A. Marques, M. Steyaert, and W. Sansen, “A 12-bit intrinsic accuracy high-speed CMOS DAC,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1959–1969, Dec.
1998.
[2] Y. Nakamura, T. Miki, A. Maeda, H. Kondoh, and N. Yazawa, “A 10-b 70-MS/s CMOS D/A Converter,” IEEE J. Solid-State Circuits, vol. 26, no. 4, pp. 637–642, Apr. 1991.
[3] A. Geert, J. Van der Plas, J. Vandenbussche, et al., “A 14-bit intrinsic accuracy Q^2 random walk CMOS DAC,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1708–1718, Dec. 1999.
[4] S. Taylor and P. Hanlon, “A dynamically precise 50 MHz 12-Bit DAC using laser-wafer trimming,”in Midwest Symposium on Circuits and Systems (MWSCAS), Aug. 1983, pp. 218–222.
[5] Y. Manoli, “A self-calibration method for fast high-resolution A/D and D/A converters,” IEEE J. Solid-State Circuits, vol. 24, no. 3, pp. 603–608, June 1989.
[6] D. Groeneveld, H. Schouwenaars, H. Termeer, and C. Bastiaansen, “A self-calibration technique for monolithic high-resolution D/A converters,” IEEE J. Solid-State Circuits, vol. 24, no. 6, pp. 1517–1522, Dec. 1989.
[7] Y. Cong and R. Geiger, “A 1.5-V 14-bit 100-MS/s self-calibrated DAC,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2051–2060, Dec. 2003.
[8] Q. Huang, P. Francese, C. Martelli, and J. Nielsen, “A 200MS/s 14b 97mW DAC in 0.18 um CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2004, pp. 364–532.
[9] M. Clara, W. Klatzer, B. Seger, A. di Giandomenico, and L. Gori, “A 1.5 V 200MS/s 13b 25mW DAC with randomized nested background calibration in 0.13um CMOS,” in Proc.
IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 250–251.
[10] Y. Ikeda, M. Frey, and A. Matsuzawa, “A 14-bit 100-MS/s digitally calibrated binary-weighted current-steering CMOS DAC without calibration ADC,” in Proc. IEEE Asian
Solid-State Circuits Conf. (ASSCC), Nov. 2007, pp. 356–359.
[11] I. Galton, “Spectral shaping of circuit errors in digital-to-analog converters,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 44, no. 10, pp. 808–817, Oct. 1997.
[12] H. Jensen and I. Galton, “A low-complexity dynamic element matching DAC for direct digital synthesis,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, no. 1, pp. 13–27, Jan. 1998.
[13] K. O’Sullivan, C. Gorman, M. Hennessy, and V. Callaghan, “A 12-bit 320-MSample/s current-steering CMOS D/A converter in 0.44 mm^2,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1064–1072, July 2004.
[14] K. Chan and I. Galton, “A 14b 100MS/s DAC with fully segmented dynamic element matching,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb.
2006, pp. 582–583.
[15] K. Chan, J. Zhu, and I. Galton, “Dynamic element matching to prevent nonlinear distortion from pulse-shape mismatches in high-resolution DACs,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 2067–2078, Sept. 2008.
[16] D. Lee, T. Kuo, and K. Wen, “Low-cost 14-Bit current-steering DAC with a randomized thermometer-coding method,” IEEE Trans. Circuits Syst. II, vol. 56, no. 2, pp. 137–141,
Feb. 2009.
[17] J. Wikner, “Studies on CMOS digital-to-analog converters,” Ph.D. dissertation, Department of Electrical Engineering, Link¨opings university, Sweden, 2001.
[18] P. Naus, E. Dijkmans, E. Stikvoort, D. Holland, and W. Bradinal, “A CMOS stereo 16-bit D/A converter for digital audio,” IEEE J. Solid-State Circuits, vol. 22, no. 3, pp. 390–395, Mar. 2002.
[19] H. Schouwenaars, D. Groeneveld, and H. Termeer, “A low-power stereo 16-bit CMOS D/A converter for digital audio,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1290–1297, June 2002.
[20] E. Balestrieri, S. Moisa, and S. Rapuano, “DAC static parameter specifications-some critical notes,” in Proc. of 10th Workshop on ADC Modelling and Testing, Sept. 2005, pp.
81–86.
[21] J. Bruce, “Nyquist-rate digital-to-analog converter architectures,” IEEE Potentials, vol. 20, no. 3, pp. 24–28, Aug. 2001.
[22] D. Draxelmayr, “A CMOS triple 9-bit 180 MHz DAC for HDTV applications,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 1993, pp. 28.3.1–28.3.4.
[23] T. Wu, C. Jih, J. Chen, and C. Wu, “A low glitch 10-bit 75-MHz CMOS video D/A converter,” IEEE J. Solid-State Circuits, vol. 30, no. 1, pp. 68–72, Jan. 1995.
[24] J. Fournier and P. Senn, “A 130-MHz 8-b CMOS video DAC for HDTV applications,”IEEE J. Solid-State Circuits, vol. 26, no. 7, pp. 1073–1077, July 2002.
[25] B. Jasper, “Practical telecom dac testing.” [Online]. Available: www.testedgeinc.com
[26] National Semiconductor, “D/A converters - Definition of terms,” May 1999.
[27] R. Van de Plassche, CMOS integrated analog-to-digital and digital-to-analog converters. Springer Netherlands, 2003.
[28] F. Maloberti, Data converters. Springer, 2007.
[29] IEEE Std. 181, “IEEE standard on transitions, pulses, and related waveforms,” 2003.
[30] P. Hendricks, “Specify communication DACs,” IEEE Spectrum, vol. 34, no. 7, pp. 58–69, 1997.
[31] W. Kester, “Evaluating high speed DAC performance,” Analog Device, MT-013, January, 2006.
[32] A. Sedra and K. Smith, Microelectronic Circuits, 5th ed. Oxford University Press, Inc., 2007.
[33] M. Pelgrom, A. Duinmaijer, and A. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433–1439, Oct. 1989.
[34] K. Lakshmikumar, R. Hadaway, and M. Copeland, “Characterisation and modeling of mismatch in MOS transistors for precision analog design,” IEEE J. Solid-State Circuits, vol. 21, no. 6, pp. 1057–1066, June 2002.
[35] K. Andersson and M. Vesterbacka, “Modeling of glitches due to rise/fall asymmetry in current-steering digital-to-analog converters,” IEEE Trans. Circuits Syst. I, vol. 52, no. 11, pp. 2265–2275, Nov. 2005.
[36] A. Van den Bosch, M. Steyaert, and W. Sansen, “Accurate statistical yield model for CMOS current-steering D/A converters,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), May 2000, pp. 105–108.
[37] K. Lakshmikumar, R. Hadaway, and M. Copeland, “Characterisation and modeling of mismatch in MOS transistors for precision analog design,” IEEE J. Solid-State Circuits, vol. 21, no. 6, pp. 1057–1066, Dec. 1986.
[38] A. Bosch, M. Steyaert, and W. Sansen, “Solving static and dynamic performance limitations for high speed D/A converters,” Analog Circuit Design, pp. 189–210, 2003.
[39] Y. Cong and R. Geiger, “Switching sequence optimization for gradient error compensation in thermometer-decoded DAC arrays,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 7, pp. 585–595, July 2000.
[40] B. Razavi, Principles of Data Conversion System Design. New York: Wiley, 1995.
[41] J.Wikner and N. Tan, “Modeling of CMOS digital-to-analog converters for telecommunication,” IEEE Trans. Circuits Syst. II, vol. 46, no. 5, pp. 489–499, May 1999.
[42] M. Shanmugasundaram and S. Pavan, “Rapid simulation of current steering digital-toanalog converters using Verilog-A,” in Proc. IEEE Custom Integrated Circuits Conf.
(CICC), Sept. 2006, pp. 201–204.
[43] R. Gray and T. Stockham Jr, “Dithered quantizers,” IEEE Trans. Inform. Theory, vol. 39, no. 3, pp. 805–812, May 1993.
[44] A. Bugeja, B. Song, P. Rakers, and S. Gillig, “A 14-b, 100-MS/s CMOS DAC designed for spectral performance,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1719–1732, Dec. 1999.
[45] R. Adams, K. Nguyen, A. Inc, and M. Wilmington, “A 113-dB SNR oversampling DAC with segmented noise-shapedscrambling,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1871–1878, Dec. 1998.
[46] A. Bugeja and B. Song, “A self-trimming 14-b 100-MS/s CMOS DAC,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1841–1852, Dec. 2000.
[47] T. Rahkonen, “Error correction in D/A converters,” University of Oulu, Oulu, Finland, Tech. Rep., 2001. [Online]. Available: http://www.analog.com
[48] S. Luschas, R. Schreier, and H. Lee, “Radio frequency digital-to-analog converter,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1462–1467, Sept. 2004.
[49] L. Carley, “A noise-shaping coder topology for 15+ bit converters,” IEEE J. Solid-State Circuits, vol. 24, no. 2, pp. 267–273, Apr. 1989.
[50] J. Hyde, T. Humes, C. Diorio, M. Thomas, and M. Figueroa, “A 300-MS/s 14-bit digital-to-analog converter in logic CMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 5, pp. 734–740, May 2003.
[51] T. Chen, P. Geens, G. Van der Plas, W. Dehaene, and G. Gielen, “A 14-bit 130-MHz CMOS current-steering DAC with adjustable INL,” in Proc. European Solid-State Circuits
Conf. (ESSCIRC), Sept. 2004, pp. 167–170.
[52] T. Chen and G. Gielen, “A 14-bit 200-MHz current-steering DAC with switching sequence post-adjustment calibration,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2386–2394, Nov. 2007.
[53] G. Radulov, P. Quinn, H. Hegt, and A. van Roermund, “A flexible 12-bit self-calibrated quad-core current-steering DAC,” in IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Nov. 2008, pp. 25–28.
[54] J.-H. Chi, S.-H. Chu, and T.-H. Tsai, “A 1.8-V 12-bit 250-MS/s 25-mW self-calibrated DAC,” in Proc. European Solid-State Circuits Conf. (ESSCIRC), Sept. 2010, pp. 222–225.
[55] M. Tiilikainen, “A 14-bit 1.8-V 20-mW 1-mm^2 CMOS DAC,” IEEE J. Solid-State Circuits, vol. 36, no. 7, pp. 1144–1147, July 2001.
[56] G. Radulov, M. Heydenreich, R. van der Hofstad, J. Hegt, and A. van Roermund, “Brownian-bridge-based statistical analysis of the DAC INL caused by current mismatch,” IEEE Trans. Circuits Syst. II, vol. 54, no. 2, pp. 146–150, Feb. 2007.
[57] O. Matsumoto, H. Harada, Y. Morimoto, T. Kumamoto, T. Miki, and M. Hotta, “An 11-bit 160-MS/s 1.35-V 10-mW D/A converter using automated device sizing system,” in Proc.
Asia and South Pacific design automation conference (ASP-DAC), Jan. 2005, pp. 809–814.
[58] H. Traff, “Novel approach to high speed CMOS current comparators,” Electronics Letters, vol. 28, no. 3, pp. 310–312, Jan. 1992.
[59] A. Bosch, M. Borremans, M. Steyaert, and W. Sansen, “A 10-bit 1-Gsample/s nyquist current-steering CMOS D/A converter,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 315–324, Mar. 2001.
[60] C. Lin and K. Bult, “A 10-b, 500-MSample/s CMOS DAC in 0.6 mm2,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1948–1958, Dec. 1998.
[61] D. Mercer, “A study of error sources in current steering digital-to-analog converters,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sept. 2004, pp. 185–190.
[62] T. Ueno, T. Yamaji, and T. Itakura, “A 1.2-V, 12-bit, 200Msample/s current-steering D/A converter in 90-nm CMOS,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sept. 2005, pp. 742–745.
[63] C. Lin, F. van der Goes, J. Westra, J. Mulder, Y. Lin, E. Arslan, E. Ayranci, X. Liu, and K. Bult, “A 12 bit 2.9 GS/s DAC with IM3 <60 dBc beyond 1 GHz in 65 nm CMOS,”
IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3285–3293, Dec. 2009.
[64] G. Radulov, P. Quinn, H. Hegt, and A. van Roermund, “An on-chip self-calibration method for current mismatch in d/a converters,” in Proc. European Solid-State Circuits Conf. (ESSCIRC), Sept. 2005, pp. 169–172.
[65] W.-H. Tseng, C.-W. Fan, and J.-T. Wu, “ A 12b 1.25GS/s DAC in 90nm CMOS with >70dB SFDR up to 500MHz,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Feb. 2011, pp. 192–193.
[66] R. Baird and T. Fiez, “Linearity enhancement of multibit A/D and D/A converters using data weighted averaging,” IEEE Transactions on Circuits and Systems-Part II: Analog and Digital Signal Processing, vol. 42, no. 12, pp. 753–762, Dec. 1995.
[67] D. Lee, Y. Lin, and T. Kuo, “Nyquist-rate current-steering digital-to-analog converters with random multiple data-weighted averaging technique and Q^N rotated walk switching scheme,” IEEE Trans. Circuits Syst. II, vol. 53, no. 11, pp. 1264–1268, Nov. 2006.
[68] A. Hamoui and K. Martin, “High-order multibit modulators and pseudo data-weighted averaging in low-oversampling sigma-delta ADCs for broad-band applications,” IEEE Trans. Circuits Syst. I, vol. 51, no. 1, pp. 72–85, Jan. 2004.
[69] I. Galton, “Why dynamic-element-matching DACs work,” IEEE Trans. Circuits Syst. II, vol. 57, no. 2, pp. 69–74, Feb. 2010.
[70] R. Van De Plassche, “Dynamic element matching for high-accuracy monolithic D/A converters,” IEEE J. Solid-State Circuits, vol. 11, no. 6, pp. 795–800, Dec. 1976.
[71] O. Andersson, “Mismatch modeling and design of CMOS current-steering digital-toanalog converters,” Master’s thesis, Department of Electrical Engineering, Link¨opings
university, Sweden, 1999.
[72] J. Rabaey, A. Chandrakasan, and B. Nikolic, Digital integrated circuits–A design perspective, 2nd ed. Prentice Hall, 2003.
[73] “High speed system applications,” Analog Devices, Inc., 2006.