簡易檢索 / 詳目顯示

研究生: 林伯彥
Lin, Po-Yen
論文名稱: 在多路徑傳播環境中使用SIMO-FMCW雷達進行多目標之無線生命體徵檢測
Wireless Multi-Target Vital Sign Detection Using SIMO-FMCW Radar in Multipath Propagation Environments
指導教授: 鍾偉和
Chung, Wei-Ho
口試委員: 張大中
Chang, Dah-Chung
李明峻
Lee, Ming-Chun
洪樂文
Hong, Yao-Win Peter
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 40
中文關鍵詞: 生命體徵調頻連續波雷達單輸入多輸出多路徑效應
外文關鍵詞: Vital signs, FMCW radar, SIMO, multipath effect
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在醫療照護應用中,調頻連續波(FMCW)雷達已被廣泛應用於非接觸式的生命體徵監測系統中。在本文中提出了一種生命體徵監測方案,可以在多路徑傳播環境的情況下,使用有限的通道資訊來以單輸入多輸出(SIMO)的FMCW雷達偵測多個目標的生命體徵(心律及呼吸頻率)。在所提出的方法中,多路徑效應的消除是藉由使用多通道的奇異譜分析(MSSA)方法,將生命體徵訊號從有多路徑效應中的訊號分解出來;之後再使用旋轉不變技術訊號參數估測演算法(ESPRIT)來估計心跳及呼吸的頻率。從模擬結果證實,所提出的方法在多路徑傳播環境中依然具有優秀的效能表現。


    Frequency-modulation continuous wave (FMCW) radar has been employed to implement a non-contact vital sign monitoring system for future healthcare applications. This thesis proposes a multi-target vital sign (heart rate and breath rate) detection scheme with limited channel information for single-input multiple-output (SIMO)-FMCW radar systems in multipath propagation environments. In the proposed method, multipath effect mitigation is first achieved by the decomposition of vital sign signals from self- and mutual-multipath interferences using the multichannel singular spectrum analysis (MSSA) algorithm. Then, the desired vital signs are estimated via the estimation of signal parameters via rotational invariance technique (ESPRIT). Simulation shows that the proposed scheme achieves superior performance in terms of the estimation error in multipath propagation environments.

    摘要 i Abstract ii 誌謝 iii Contents vi List of Figures viii List of Tables ix 1 Introduction 1 1.1 Background 1 1.2 Literature Review and Related Works 2 1.3 Contribution 3 1.4 Organization of the Thesis 3 2 Technical Background 5 2.1 Radar System for Vital Sign Detection 5 2.1.1 CW radar 6 2.1.2 IR-UWB radar 6 2.1.3 FMCW radar 7 2.2 Multiantenna Radar System 8 3 Multipath Effect Mitigation Scheme 10 3.1 Signal Model 11 3.1.1 FMCW System Model 11 3.1.2 Multipath Effect 12 3.2 Range Profile and Target Bin Selection 15 3.3 Problem Formulation 16 3.4 The Proposed Scheme 18 3.4.1 Multipath Effect Mitigation via the MSSA Algorithm 18 3.4.2 Vital Signs Frequency Estimation via the ESPRIT Algorithm 21 3.5 Summary 22 4 Simulations Results and Discussion 23 4.1 Simulation Settings 23 4.2 Results and Discussion 24 4.2.1 Performance of N_r = 4 for Each Target 24 4.2.2 Performance of N_r = 16 for Each Target 28 4.2.3 Performance of Multipath Mitigation Capabilities 31 5 Conclusion and Future Work 33 References 35

    [1] A. Zaza, C. Ronchi, and G. Malfatto, “Arrhythmias and heart rate: Mechanisms and significance of a relationship,” Arrhythm Electrophysiol Rev., vol. 7, no. 4, pp. 232–237, Dec. 2018.
    [2] K. Zhu, M. Li, S. Akbarian, A. Yadollahi, and B. Taati, “Vision-based heart and respiratory rate monitoring during sleep – a validation study for the population at risk of sleep apnea,” IEEE J. Transl. Eng. Health Med., vol. 7, pp. 1–8, Oct. 2019.
    [3] M. A. Cretikos, R. Bellomo, K. Hillman, J. Chen, S. Finfer, and A. Flabouris, “Respiratory rate: The neglected vital sign,” Med. J. Aust., vol. 188, no. 11, pp. 657–659, Jun. 2008.
    [4] M. Malik, “Heart rate variability: Standards of measurement, physiological interpretation and clinical use,” Circulation, vol. 93, no. 5, pp. 1043–1065, Mar. 1996.
    [5] E. J. d. S. Luz, W. R. Schwartz, G. Cámara-Chávez, and D. Menotti, “ECG-based heartbeat classification for arrhythmia detection: A survey,” Comput. Methods Programs Biomed., vol. 127, pp. 144–164, Apr. 2016.
    [6] P. H. Charlton, D. A. Birrenkott, T. Bonnici, and M. A. F. Pimentel, “Breathing rate estimation from the electrocardiogram and photoplethysmogram: A review,” IEEE Rev. Biomed. Eng., vol. 11, pp. 2–20, 2018.
    [7] J. M. May, J. P. Phillips, T. Fitchat, S. Ramaswamy, S. Snidvongs, and P. A. Kyriacou, “A novel photoplethysmography sensor for vital signs monitoring from the human trachea,” Biosensors, vol. 9, no. 4, Oct. 2019.
    [8] C. Orphanidou, “Derivation of respiration rate from ambulatory ECG and PPG using ensemble empirical mode decomposition: Comparison and fusion,” Comput. Biol. Med., vol. 81, pp. 45–54, Feb. 2017.
    [9] P. Lopez-Meyer and E. Sazonov, “Automatic breathing segmentation from wearable respiration sensors,” in Proc. IEEE Int. Conf. on Sens. Technol., 2011, pp. 156–160.
    [10] W. Wang and A. C. d. Brinker, “Modified RGB cameras for infrared remote-PPG,” IEEE Trans. Biomed. Eng., vol. 67, p. 2893–2904, Oct. 2020.
    [11] M. Ambrosanio, S. Franceschini, G. Grassini, and F. Baselice, “A multi-channel ultrasound system for non-contact heart rate monitoring,” IEEE Sensors J., vol. 20, no. 4, pp. 2064–2074, Feb. 2020.
    [12] G. Wang, J.-M. Muñoz-Ferreras, C. Gu, C. Li, and R. Gómez-García, “Application of linear-frequency-modulated continuous-wave (LFMCW) radars for tracking of vital signs,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 6, pp. 1387–1399, Jun. 2014.
    [13] M. Alizadeh, G. Shaker, J. C. M. D. Almeida, P. P. Morita, and S. Safavi-Naeini, “Remote monitoring of human vital signs using mm-wave FMCW radar,” IEEE Access, vol. 7, pp. 54 958–54 968, 2019.
    [14] M. He, Y. Nian, and Y. Gong, “Novel signal processing method for vital sign monitoring using FMCW radar,” Biomed. Signal Process. Control, vol. 33, pp. 335–345, Mar. 2017.
    [15] Q. Wu, Z. Mei, Z. Lai, D. Li, and D. Zhao, “A non-contact vital signs detection in a multi-channel 77GHz LFMCW radar system,” IEEE Access, vol. 9, pp. 49 614–49 628, 2021.
    [16] J. Xiong, H. Hong, H. Zhang, N. Wang, H. Chu, and X. Zhu, “Multitarget respiration detection with adaptive digital beamforming technique based on SIMO radar,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 11, pp. 4814–4824, Nov. 2020.
    [17] Y. Yoon, J. Kim, and Y. Chong, “Multipath delay characteristic in mm-wave radio propagation in indoor public area,” in Proc. IEEE Int. Conf. Inf. Commun. Technol. Converg. (ICTC), 2016, pp. 966–968.
    [18] J.Wagner, A. Strobel, N. Joram, R. Eickhoff, and F. Ellinger, “FMCW system aspects for multipath environments,” in Proc. 8th Wkshp. Positioning Navigation Commun., 2011, pp. 89–93.
    [19] Z. Chen, Y. Liu, S. Li, and G. Wang, “Study on the multipath propagation characteristics of UWB signal for indoor lab environments,” in Proc. IEEE Int. Conf. on Ubiquitous Wireless Broadband (ICUWB), 2016, pp. 1–4.
    [20] M. Mercuri, Y. Lu, S. Polito, F.Wieringa, Y.-H. Liu, A.-J. van der Veen, C. Van Hoof, and T. Torfs, “Enabling robust radar-based localization and vital signs monitoring in multipath propagation environments,” IEEE Trans. Biomed. Eng., vol. 68, no. 11, pp. 3228–3240, Nov. 2021.
    [21] T. K. V. Dai, K. Oleksak, T. Kvelashvili, F. Foroughian, C. Bauder, P. Theilmann, A. E. Fathy, and O. Kilic, “Enhancement of remote vital sign monitoring detection accuracy using multiple-input multiple-output 77 GHz FMCW radar,” IEEE J. Electromagn. RF Microw. Med. Biol., vol. 6, no. 1, pp. 111–122, Mar. 2021.
    [22] J. Lin, “Noninvasive microwave measurement of respiration,” Proc. IEEE, vol. 63, no. 10, pp. 1530–1530, 1975.
    [23] A. Singh, S. U. Rehman, S. Yongchareon, and P. H. J. Chong, “Multi-resident non-contact vital sign monitoring using radar: A review,” IEEE Sensors J., vol. 21, no. 4, pp. 4061– 4084, Feb. 2021.
    [24] S. Pisa, E. Pittella, and E. Piuzzi, “A survey of radar systems for medical applications,” IEEE Aerosp. Electron. Syst. Mag., vol. 31, no. 11, pp. 64–81, Nov. 2016.
    [25] J.-M. Muñoz-Ferreras, Z. Peng, R. Gómez-García, and C. Li, “Random body movement mitigation for FMCW-radar-based vital-sign monitoring,” in Proc. IEEE Topical Conf. Biomed. Wireless Technol., Netw., Sens. Syst. (BioWireleSS), 2016, pp. 22–24.
    [26] C. Li and J. Lin, “Random body movement cancellation in Doppler radar vital sign detection,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 12, pp. 3143–3152, Dec. 2008.
    [27] E. Schires, P. Georgiou, and T. S. Lande, “Vital sign monitoring through the back using an uwb impulse radar with body coupled antennas,” IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 2, pp. 292–302, Apr. 2018.
    [28] D. Yang, Z. Zhu, and B. Liang, “Vital sign signal extraction method based on permutation entropy and EEMD algorithm for ultra-wideband radar,” IEEE Access, vol. 7, pp. 178 879–178 890, 2019.
    [29] J. Salmi, O. Luukkonen, and V. Koivunen, “Continuous wave radar based vital sign estimation: Modeling and experiments,” in IEEE Radar Conf., 2012, pp. 0564–0569.
    [30] J. Tu, T. Hwang, and J. Lin, “Respiration rate measurement under 1-D body motion using single continuous-wave Doppler radar vital sign detection system,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 6, pp. 1937–1946, Jun. 2016.
    [31] T.-W. Hsu and C.-H. Tseng, “Compact 24-GHz Doppler radar module for non-contact human vital-sign detection,” in IEEE Int. symp. dig. antennas propag. (ISAP), 2016, pp. 994–995.
    [32] Y. Xu, S. Dai, S. Wu, J. Chen, and G. Fang, “Vital sign detection method based on multiple higher order cumulant for ultrawideband radar,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1254–1265, 2012.
    [33] B. Schleicher, I. Nasr, A. Trasser, and H. Schumacher, “IR-UWB radar demonstrator for ultra-fine movement detection and vital-sign monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2076–2085, May 2013.
    [34] Z. Duan and J. Liang, “Non-contact detection of vital signs using a UWB radar sensor,” IEEE Access, vol. 7, pp. 36 888–36 895, 2019.
    [35] F. Colone, D. W. O'Hagan, P. Lombardo, and C. J. Baker, “A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 45, no. 2, pp. 698–722, Apr. 2009.
    [36] G.-H. Park, Y.-K. Seo, and H.-N. Kim, “Range-Doppler domain-based DOA estimation method for FM-band passive bistatic radar,” IEEE Access, vol. 8, pp. 56 880–56 891, 2020.
    [37] Y. Yuan, W. Yi, R. Hoseinnezhad, and P. K. Varshney, “Robust power allocation for resource-aware multi-target tracking with colocated mimo radars,” IEEE Trans. Signal Process., vol. 69, pp. 443–458, 2021.
    [38] P. Chen, L. Zheng, X. Wang, H. Li, and L. Wu, “Moving target detection using colocated mimo radar on multiple distributed moving platforms,” IEEE Trans. Signal Process., vol. 65, no. 17, pp. 4670–4683, Sep. 2017.
    [39] A. Ahmad, J. C. Roh, D. Wang, and A. Dubey, “Vital signs monitoring of multiple people using a FMCW millimeter-wave sensor,” in Proc. IEEE Radar Conf. (RadarConf18), 2018, pp. 1450–1455.
    [40] K. Yamamoto, K. Endo, and T. Ohtsuki, “Remote sensing of heartbeat based on space diversity using MIMO FMCW radar,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2021, pp. 1–6.
    [41] TFESCNASP Electrophysiology, “Heart rate variability: Standards of measurement, physiological interpretation, and clinical use,” Circulation, vol. 93, no. 5, pp. 1043–1065, 1996.
    [42] N. Golyandina, V. Nekrutkin, and A. Zhigljavsky, Analysis of Time Series Structure: SSA and Related Techniques. Chapman & Hall (Ltd.), London, UK, 2001.
    [43] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariance techniques,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 7, pp. 984–995, Jul. 1989.
    [44] M. Chu, T. Nguyen, V. Pandey, Y. Zhou, H. N. Pham, R. Bar-Yoseph, S. Radom-Aizik, R. Jain, D. M. Cooper, and M. Khine, “Respiration rate and volume measurements using wearable strain sensors,” NPJ Digital Med., vol. 2, no. 1, pp. 1–9, 2019.
    [45] T. instrument, “Mmwave studio user guide,” in Texas Instruments MMWAVE Studio GUI, 2020.
    [46] S. Ghufran and K. C. Veluvolu, “Surface chest motion decomposition for cardiovascular monitoring,” Sci. Rep., vol. 4, no. 1, pp. 5903–5912, May 2014.
    [47] A. De Groote, M. Wantier, G. Cheron, M. Estenne, and M. Paiva, “Chest wall motion during tidal breathing,” J. Appl. Physiol., vol. 83, no. 5, pp. 1531–1537, May 1997.

    QR CODE