研究生: |
王欣瑞 Wang, Hsin-Juei |
---|---|
論文名稱: |
以冷凍鑄造法合成具多階層孔洞 之沸石材料應用於二氧化碳吸附 Hierarchically Porous Structured Zeolite Materials Synthesized by Freeze Casting for CO2 Adsorption |
指導教授: |
陳柏宇
Chen, Po-Yu |
口試委員: |
陳翰儀
Chen, Han-Yi 黃爾文 Huang, E-Wen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 96 |
中文關鍵詞: | 沸石 、碳捕捉 、冷凍鑄造法 、多階層孔洞 |
外文關鍵詞: | Zeolite, Carbon capture, Freeze casting, Hierarchical stucture |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來由於溫室效應逐漸加劇,因此如何降低大氣中的二氧化碳濃度成為大眾所關心的議題,碳捕捉(Carbon capture)也逐漸成為熱門的研究議題。然而現今技術多半受限於分離效率不佳、再生能力低落等問題。沸石為一種天然的孔洞材料,其奈米等級的孔洞使其擁有極大的表面積,常被使用於過濾或催化劑,其中鈉沸石13X尤其具有較佳的二氧化碳吸附能力,本實驗採用鈉沸石13X為原料,並搭配冷凍鑄造法(Freeze Casting)合成單一方向性的孔洞材料,使氣體容易擴散進入內部以增進吸附效率。由於沸石粉末需要聯結劑(Binder)才能形成強度足夠的塊材,因此本實驗利用膨潤土以及聚乙烯醇做為聯結劑,利用燒結以及醚化的方法增進其機械性質。吸附結果顯示經冷凍鑄造法合成的孔洞材料不論在吸附量以及氣體擴散係數方面皆能與傳統的沸石球顆粒相匹敵。綜上所述,我們利用沸石的天然孔洞以及冷凍鑄造法,成功合成出多階層的孔洞材料,期待未來能應用於碳捕捉上。
Carbon capture has become a popular issue recently due to global warming. Adsorption of carbon dioxide from the atmosphere is also catching attention from public. However, technique to date still suffers from low gas separation efficiency and regeneration difficulties. Zeolite is natural microporous material that is often used as filter or catalyst. One of the members in the zeolite family called sodium 13X has ability to adsorb carbon dioxide from the atmosphere. Owing to this characteristic, it is chosen as the raw material in this study. Freeze casting method is utilized to synthesize hierarchical micro-sized channel and nano-sized pores through optimized cooling rate and water content. These unidirectional channels allow gas to flow to the interior of the scaffold and enhance adsorption efficiency. Furthermore, binders are necessary in order to provide enough mechanical strength. Bentonite/Poly Vinyl Alcohol are selected as inorganic/organic binder and sintering/etherification process are conducted to elevate compressive strength. The thermogravimetric analysis indicates that the total amount of adsorption is 3 mmol/g and the diffusivity is 10-15~10-16 m2/s. Both results are competitive to the zeolite pellet that is commonly seen. To summarize, hierarchical porous scaffold with unidirectional channels can be successfully synthesized by freeze casting. The total amount of adsorption and diffusivity are both comparable to the zeolite beads that are normally used.
1. Albo, J., P. Luis, and A. Irabien, Carbon dioxide capture from flue gases using a cross-flow membrane contactor and the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. Industrial & Engineering Chemistry Research, 2010. 49(21): p. 11045-11051.
2. Oh, T.H., Carbon capture and storage potential in coal-fired plant in Malaysia—A review. Renewable and Sustainable Energy Reviews, 2010. 14(9): p. 2697-2709.
3. Yu, C.-H., A Review of CO2 Capture by Absorption and Adsorption. Aerosol and Air Quality Research, 2012.
4. Rochelle, G.T., Amine scrubbing for CO2 capture. Science, 2009. 325(5948): p. 1652-1654.
5. Deville, S., E. Saiz, and A.P. Tomsia, Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 2006. 27(32): p. 5480-5489.
6. Lasalle, A., et al., Ice‐Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 2012. 95(2): p. 799-804.
7. Szepes, A., et al., Freeze-casting technique in the development of solid drug delivery systems. Chemical Engineering and Processing: Process Intensification, 2007. 46(3): p. 230-238.
8. Frank, G., E. Christian, and K. Dietmar, A Novel Production Method for Porous Sound‐Absorbing Ceramic Material for High‐Temperature Applications. International Journal of Applied Ceramic Technology, 2011. 8(3): p. 646-652.
9. Cable, T.L., et al., Regenerative performance of the NASA symmetrical solid oxide fuel cell design. International Journal of Applied Ceramic Technology, 2011. 8(1): p. 1-12.
10. Lee, S.H., et al., Fabrication of Porous PZT–PZN Piezoelectric Ceramics With High Hydrostatic Figure of Merits Using Camphene‐Based Freeze Casting. Journal of the American Ceramic Society, 2007. 90(9): p. 2807-2813.
11. Rezaei, F. and P. Webley, Optimum structured adsorbents for gas separation processes. Chemical Engineering Science, 2009. 64(24): p. 5182-5191.
12. Rezaei, F. and P. Webley, Structured adsorbents in gas separation processes. Separation and Purification Technology, 2010. 70(3): p. 243-256.
13. Cavenati, S., C.A. Grande, and A.E. Rodrigues, Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures. Journal of Chemical & Engineering Data, 2004. 49(4): p. 1095-1101.
14. Plaza, M.G., et al., Post-combustion CO 2 capture with a commercial activated carbon: comparison of different regeneration strategies. Chemical Engineering Journal, 2010. 163(1): p. 41-47.
15. Saha, D. and S. Deng, Adsorption equilibrium and kinetics of CO 2, CH 4, N 2 O, and NH 3 on ordered mesoporous carbon. Journal of colloid and interface science, 2010. 345(2): p. 402-409.
16. Ryoo, R., S.H. Joo, and S. Jun, Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B, 1999. 103(37): p. 7743-7746.
17. Liang, C. and S. Dai, Synthesis of Mesoporous Carbon Materials via Enhanced Hydrogen-Bonding Interaction. Journal of the American Chemical Society, 2006. 128(16): p. 5316-5317.
18. Cinke, M., et al., CO 2 adsorption in single-walled carbon nanotubes. Chemical Physics Letters, 2003. 376(5): p. 761-766.
19. Hsu, S.-C., et al., Thermodynamics and regeneration studies of CO 2 adsorption on multiwalled carbon nanotubes. Chemical Engineering Science, 2010. 65(4): p. 1354-1361.
20. Su, F., et al., Capture of CO 2 from flue gas via multiwalled carbon nanotubes. Science of the total environment, 2009. 407(8): p. 3017-3023.
21. Ghosh, A., et al., Uptake of H2 and CO2 by graphene. The Journal of Physical Chemistry C, 2008. 112(40): p. 15704-15707.
22. Férey, G., Hybrid porous solids: past, present, future. Chemical Society Reviews, 2008. 37(1): p. 191-214.
23. Yaghi, O.M., et al., Reticular synthesis and the design of new materials. Nature, 2003. 423(6941): p. 705-714.
24. Millward, A.R. and O.M. Yaghi, Metal− organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. Journal of the American Chemical Society, 2005. 127(51): p. 17998-17999.
25. Himeno, S., T. Komatsu, and S. Fujita, High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. Journal of Chemical & Engineering Data, 2005. 50(2): p. 369-376.
26. Sayari, A., Y. Belmabkhout, and R. Serna-Guerrero, Flue gas treatment via CO 2 adsorption. Chemical Engineering Journal, 2011. 171(3): p. 760-774.
27. Chew, T.-L., A.L. Ahmad, and S. Bhatia, Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO 2). Advances in Colloid and Interface Science, 2010. 153(1): p. 43-57.
28. Liu, X., et al., Adsorption of CO 2, CH 4 and N 2 on ordered mesoporous silica molecular sieve. Chemical physics letters, 2005. 415(4): p. 198-201.
29. Sun, Y., et al., Studies on ordered mesoporous materials for potential environmental and clean energy applications. Applied surface science, 2007. 253(13): p. 5650-5655.
30. Xu, X., et al., Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy & Fuels, 2002. 16(6): p. 1463-1469.
31. Xu, X., et al., Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41. Industrial & engineering chemistry research, 2005. 44(21): p. 8113-8119.
32. Ma, X., X. Wang, and C. Song, “Molecular basket” sorbents for separation of CO2 and H2S from various gas streams. Journal of the American Chemical Society, 2009. 131(16): p. 5777-5783.
33. Baerlocher, C., L.B. McCusker, and D.H. Olson, eds. Atlas of Zeolite Structure Types, 6th revised ed
2007, Elsevier: Amsterdem.
34. Goj, A., et al., Atomistic simulations of CO2 and N2 adsorption in silica zeolites: the impact of pore size and shape. The Journal of Physical Chemistry B, 2002. 106(33): p. 8367-8375.
35. Barrer, R. and R. Gibbons, Zeolitic carbon dioxide: energetics and equilibria in relation to exchangeable cations in faujasite. Transactions of the Faraday Society, 1965. 61: p. 948-961.
36. Walton, K.S., M.B. Abney, and M.D. LeVan, CO 2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous and Mesoporous Materials, 2006. 91(1): p. 78-84.
37. Maurin, G., P. Llewellyn, and R. Bell, Adsorption mechanism of carbon dioxide in faujasites: grand canonical Monte Carlo simulations and microcalorimetry measurements. The Journal of Physical Chemistry B, 2005. 109(33): p. 16084-16091.
38. Pirngruber, G., et al., The role of the extra-framework cations in the adsorption of CO 2 on faujasite Y. Physical Chemistry Chemical Physics, 2010. 12(41): p. 13534-13546.
39. Brandani, F. and D.M. Ruthven, The effect of water on the adsorption of CO2 and C3H8 on type X zeolites. Industrial & engineering chemistry research, 2004. 43(26): p. 8339-8344.
40. Zukal, A., J. Pawlesa, and J. Čejka, Isosteric heats of adsorption of carbon dioxide on zeolite MCM-22 modified by alkali metal cations. Adsorption, 2009. 15(3): p. 264-270.
41. Hirotani, A., et al., Grand canonical Monte Carlo simulation of the adsorption of CO 2 on silicalite and NaZSM-5. Applied surface science, 1997. 120(1): p. 81-84.
42. Akten, E.D., R. Siriwardane, and D.S. Sholl, Monte Carlo simulation of single-and binary-component adsorption of CO2, N2, and H2 in zeolite Na-4A. Energy & Fuels, 2003. 17(4): p. 977-983.
43. Leyssale, J.-M., G.K. Papadopoulos, and D.N. Theodorou, Sorption thermodynamics of CO2, CH4, and their mixtures in the ITQ-1 zeolite as revealed by molecular simulations. The Journal of Physical Chemistry B, 2006. 110(45): p. 22742-22753.
44. Jadhav, P., et al., Monoethanol amine modified zeolite 13X for CO2 adsorption at different temperatures. Energy & Fuels, 2007. 21(6): p. 3555-3559.
45. Choi, S., J.H. Drese, and C.W. Jones, Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2009. 2(9): p. 796-854.
46. Ho, M.T., G.W. Allinson, and D.E. Wiley, Reducing the cost of CO2 capture from flue gases using pressure swing adsorption. Industrial & Engineering Chemistry Research, 2008. 47(14): p. 4883-4890.
47. Li, G., et al., Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption, 2008. 14(2-3): p. 415-422.
48. Merel, J., M. Clausse, and F. Meunier, Experimental investigation on CO2 post− combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites. Industrial & Engineering Chemistry Research, 2008. 47(1): p. 209-215.
49. Zhang, J., P.A. Webley, and P. Xiao, Effect of process parameters on power requirements of vacuum swing adsorption technology for CO 2 capture from flue gas. Energy Conversion and Management, 2008. 49(2): p. 346-356.
50. Olson, D.H., Reinvestigation of the crystal structure of the zeolite hydrated NaX. The Journal of Physical Chemistry, 1970. 74(14): p. 2758-2764.
51. Olson, D.H., The crystal structure of dehydrated NaX. Zeolites, 1995. 15(5): p. 439-443.
52. Rabo, J.A., Zeolite chemistry and catalysis. Vol. 171. 1976: Amer Chemical Society.
53. Zhu, L. and K. Seff, Reinvestigation of the crystal structure of dehydrated sodium zeolite X. The Journal of Physical Chemistry B, 1999. 103(44): p. 9512-9518.
54. Mortier, W.J. and R.A. Schoonheydt, Surface and solid state chemistry of zeolites. Progress in solid state chemistry, 1985. 16(1-2): p. 1-125.
55. Pearce, H., Zeolite molecular sieves—Structure, chemistry and use: by DA Breck, Wiley-Interscience, New York, 1974, XII+ 772 pp., price US $32.50. 1975, Elsevier.
56. Akhtar, F. and L. Bergström, Colloidal Processing and Thermal Treatment of Binderless Hierarchically Porous Zeolite 13X Monoliths for CO2 Capture. Journal of the American Ceramic Society, 2011. 94(1): p. 92-98.
57. Ojuva, A., et al., Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS Appl Mater Interfaces, 2013. 5(7): p. 2669-76.
58. Besser, B., et al., Hierarchical Porous Zeolite Structures for Pressure Swing Adsorption Applications. ACS Appl Mater Interfaces, 2016. 8(5): p. 3277-86.
59. Wegst, U.G., et al., Biomaterials by freeze casting. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2010. 368(1917): p. 2099-2121.
60. Zhang, H., et al., Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature materials, 2005. 4(10): p. 787-793.
61. Deville, S., Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues. Advanced Engineering Materials, 2008. 10(3): p. 155-169.
62. Porter, M.M., J. McKittrick, and M.A. Meyers, Biomimetic Materials by Freeze Casting. Jom, 2013. 65(6): p. 720-727.
63. Deville, S., et al., Freezing as a Path to Build Complex Composites. Science, 2006. 311(5760): p. 515-518.
64. Deville, S., E. Saiz, and A.P. Tomsia, Ice-templated porous alumina structures. Acta Materialia, 2007. 55(6): p. 1965-1974.
65. Wegst, U.G., et al., Biomaterials by freeze casting. Philos Trans A Math Phys Eng Sci, 2010. 368(1917): p. 2099-2121.
66. Lottermoser, A., Über das Ausfrieren von Hydrosolen. Berichte der deutschen chemischen Gesellschaft, 1908. 41(3): p. 3976-3979.
67. Maxwell, W., R. Gurnick, and A. Francisco, Preliminary Investigation of the'freeze-casting'Method for Forming Refractory Powders. NACA Research Memorandum, Lewis Flight Propulsion Laboratory, 1954.
68. Fukasawa, T., et al., Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 2001. 36(10): p. 2523-2527.
69. Fukasawa, T., et al., Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze-Drying Process. Journal of the American Ceramic Society, 2002. 85(9): p. 2151-2155.
70. Blindow, S., et al., Hydroxyapatite/SiO2 Composites via Freeze Casting for Bone Tissue Engineering. Advanced Engineering Materials, 2009. 11(11): p. 875-884.
71. Moon, J.-W., et al., Preparation of NiO–YSZ tubular support with radially aligned pore channels. Materials Letters, 2003. 57(8): p. 1428-1434.
72. Koh, Y.-H., J.-J. Sun, and H.-E. Kim, Freeze casting of porous Ni–YSZ cermets. Materials Letters, 2007. 61(6): p. 1283-1287.
73. Sofie, S.W., Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze-Tape-Casting Process. Journal of the American Ceramic Society, 2007. 90(7): p. 2024-2031.
74. Ren, L., Y.-P. Zeng, and D. Jiang, Fabrication of Gradient Pore TiO2 Sheets by a Novel Freeze-Tape-Casting Process. Journal of the American Ceramic Society, 2007. 90(9): p. 3001-3004.
75. Chino, Y. and D.C. Dunand, Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Materialia, 2008. 56(1): p. 105-113.
76. Yook, S.-W., et al., Porous titanium (Ti) scaffolds by freezing TiH2/camphene slurries. Materials Letters, 2008. 62(30): p. 4506-4508.
77. Yook, S.-W., H.-E. Kim, and Y.-H. Koh, Fabrication of porous titanium scaffolds with high compressive strength using camphene-based freeze casting. Materials Letters, 2009. 63(17): p. 1502-1504.
78. Driscoll, D., A.J. Weisenstein, and S.W. Sofie, Electrical and flexural anisotropy in freeze tape cast stainless steel porous substrates. Materials Letters, 2011. 65(23-24): p. 3433-3435.
79. Schoof, H., et al., Control of pore structure and size in freeze-dried collagen sponges. Journal of Biomedical Materials Research, 2001. 58(4): p. 352-357.
80. Kuberka, M., et al., Magnification of the pore size in biodegradable collagen sponges. The International Journal of Artificial Organs, 2002. 25(1): p. 67-73.
81. Zhang, Y., L. Hu, and J. Han, Preparation of a Dense/Porous BiLayered Ceramic by Applying an Electric Field During Freeze Casting. Journal of the American Ceramic Society, 2009. 92(8): p. 1874-1876.
82. Porter, M.M., et al., Magnetic freeze casting inspired by nature. Materials Science and Engineering: A, 2012. 556: p. 741-750.
83. Lee, P.-H., Synthesis of Hierarchically Porous Structured Bio-Inspired Composites by Diatomites and Freeze Casting, in Department of Materials Science and Engineering. 2015, National Tsing Hua University: Unpublished Results.
84. Ojuva, A., et al., Mechanical performance and CO2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 2015. 35(9): p. 2607-2618.
85. Frank, G., E. Christian, and K. Dietmar, A Novel Production Method for Porous Sound-Absorbing Ceramic Material for High-Temperature Applications. International Journal of Applied Ceramic Technology, 2011. 8(3): p. 646-652.
86. da Silva, L.L. and F. Galembeck, Morphology of latex and nanocomposite adsorbents prepared by freeze-casting. Journal of Materials Chemistry A, 2015. 3(14): p. 7263-7272.
87. Macario, A., et al., Synthesis of mesoporous materials for carbon dioxide sequestration. Microporous and mesoporous materials, 2005. 81(1): p. 139-147.
88. Dunne, J., et al., Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite. Langmuir, 1996. 12(24): p. 5888-5895.
89. Harlick, P. and F. Tezel, Adsorption of carbon dioxide, methane and nitrogen: pure and binary mixture adsorption for ZSM-5 with SiO 2/Al 2 O 3 ratio of 280. Separation and purification technology, 2003. 33(2): p. 199-210.
90. Ahmed, I.A.M., S.D. Young, and N.M.J. Crout, Time-dependent sorption of Cd2+ on CaX zeolite: Experimental observations and model predictions. Geochimica et Cosmochimica Acta, 2006. 70(19): p. 4850-4861.
91. Ko, D., R. Siriwardane, and L.T. Biegler, Optimization of a pressure-swing adsorption process using zeolite 13X for CO2 sequestration. Industrial & Engineering Chemistry Research, 2003. 42(2): p. 339-348.
92. Zhang, H., et al., Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature Materials, 2005. 4(10): p. 787-793.
93. Waschkies, T., R. Oberacker, and M.J. Hoffmann, Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 2011. 59(13): p. 5135-5145.
94. Laarz, E., et al., Colloidal processing of Al 2 O 3-based composites reinforced with TiN and TiC particulates, whiskers and nanoparticles. Journal of the European Ceramic Society, 2001. 21(8): p. 1027-1035.
95. Meyers, M.A., J. McKittrick, and P.-Y. Chen, Structural biological materials: critical mechanics-materials connections. science, 2013. 339(6121): p. 773-779.
96. Kärger, J., Determination of Diffusion Coefficients in Porous Media, in Handbook of Heterogeneous Catalysis. 2008, Wiley-VCH Verlag GmbH & Co. KGaA.
97. Silva, J.A.C., K. Schumann, and A.E. Rodrigues, Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite. Microporous and Mesoporous Materials, 2012. 158: p. 219-228.
98. Zhao, Z., et al., Adsorption of carbon dioxide on alkali-modified zeolite 13X adsorbents. International Journal of Greenhouse Gas Control, 2007. 1(3): p. 355-359.