研究生: |
張智豪 Chang, Chi-Hao |
---|---|
論文名稱: |
多鐵性材料Ba2Mg2Fe12O22的磁性相變 Magnetic Transitions of Multiferroic Hexaferrite Ba2Mg2Fe12O22 |
指導教授: |
黃迪靖
Huang, D. J. |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 67 |
中文關鍵詞: | 磁性相變 、多鐵性 、軟X光共振散射 |
外文關鍵詞: | Ba2Mg2Fe12O22, magnetic transition, multiferroics, soft x-ray resonant scattering |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多鐵性是指一個材料在同一個狀態下有兩個或兩個以上的鐵性質,其中有一個特別的多鐵性是磁電效應目前受到很多注目,所謂的磁電效應是用外加電場來控制材料內部的磁極,或者是利用外加磁場來控制材料的電極,六方晶系的Ba2Mg2Fe12O22就是磁電效應材料,它是利用微弱的外加磁場(0.03 T)就可以控制材料的電極,然而這個現象尚未完全釐清。我們利用超導量子干涉儀(SQUID)、軟X光吸收光譜包括磁旋光二元性(MCD)以及共振軟X光磁性散射來研究Ba2Mg2Fe12O222磁性以及其相變,實驗數據顯示出Ba2Mg2Fe12O22有各向異性的自旋有序性,並且有一個commersurate-incommeersurate的磁性相變,二維的共振X光散射數據展現出Ba2Mg2Fe12O22在c軸方向的自旋與自旋之間的耦合微弱,因為如此可能會有微弱的外加磁場可以控制Ba2Mg2Fe12O22電極化的情況。
Multiferroics are materials that exhibit more than one primary ferroic order parameter
in single phase. A special kind of multiferroics with a gigantic magnetoelectric coupling has attracted much attention. Haxeferrite Ba2Mg2Fe12O22 is a particularly interesting magnetoelectric material because its electric polarization can be controlled by a low magnetic field. However, such a multiferroic feature is far from being understood. We here investigated magnetic properties and transitions of Ba2Mg2Fe12O22 by using a superconducting quantum interference device (SQUID), soft x-ray absorption including magnetic circular dichroism, and resonant soft x-ray magnetic scattering. The results indicate that Ba2Mg2Fe12O22 exhibits an anisotropic spin ordering and a commensurate-to-incommensurate magnetic transition. Two-dimension distributions of magnetic scattering reveal a weak spin-spin correlation along the c axis, leading to a possible scenario for the low-field control of electric polarization discovered in haxeferrite Ba2Mg2Fe12O22.
[1] J. Orenstein and A. J. Millis, Science 288, 468 (2000).
[2] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
[3] A. P. Ramirez, J. Phys.: Condens. Matter. 9, 8171 (1997).
[4] H. Schmid, Ferroelectrics 162, 317 (1994).
[5] Y. Tokura, SCIENCE 312, 1481 (2006).
[6] S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).
[7] T. Kimura et al., Nature 426, 55 (2003).
[8] N. A. Spaldin and M. Fiebig, SCIENCE 309, 391 (2005).
[9] M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).
[10] W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).
[11] P. Curie, J. Phys. 3, 393 (1894).
[12] D. N. Astrov, Sov. Phys. JETP 11, 708 (1960).
[13] V. J. Folen, G. T. Rado, and E. W. Stalder, Phys. Rev. Lett. 7, 310 (1961).
[14] N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
[15] F. D. J. Guojin, Introduction to condensed matter physics, World Scienti_c Publishing
Company, 2005.
[16] T. Kimura, Annu. Rev. Mater. Res. 37, 387 (2007).
[17] T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Phys. Rev. Lett. 92,
257201 (2004).
[18] T. Kimura, G. Lawes, and A. P. Ramirez, Phys. Rev. Lett. 94, 127201 (2005).
[19] W. F. B. Jr., R. M. Hornreich, and S. Shtrikman, Phys. Rev. 168, 574 (1968).
[20] H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 945, 057205 (2005).
[21] S. Blundell, Magnetism in condensed matter, Oxford, 2001.
[22] J. Als-Nielsen and D. McMorrow, Elements of modern X-ray physics, Wiley, 2001.
[23] S. W. Lovesey and S. P. Collins, X-ray scattering and absorption by magnetic mate-
rials, Oxford, 1996.
[24] F. de Groot; A. Kotani, Core Level Spectroscopy of Solids, CRC, 2008.
[25] S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, and Y. Tokura1, Science 319, 1643
(2008).
[26] T. Kimura, G. Lawes, and A. P. Ramirez, Phys. Rev. Lett. 94, 127201 (2005).
[27] K. Taniguchi, N. Abe1, S. Ohtani1, H. Umetsu1, and T. hisa Arima, Appl. Phys.
Express 1, 031301 (2008).
[28] N. M. amd Yasuo YAMAGUCHlt and M. MITA, J. Phys. Soc. Jpn. 55, 1350 (1986).