研究生: |
何顗琤 Yi-Cheng Ho |
---|---|
論文名稱: |
以微轉印及微模板技術建立神經細胞陣列 Building Neuronal Cell Arrays Using Microprinting and Microstencil Technology |
指導教授: |
張兗君
Yen-Chung Chang 方維倫 Weileun Fang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 神經細胞 、微接觸印刷 、模版 |
相關次數: | 點閱:45 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
整合微製造技術與細胞培養,可將細胞生長作空間上的調控,以利基礎細胞生物學的研究。本論文利用梳狀結構引導神經突起向單一方向伸展,試圖將細胞體與神經突起做空間上的區隔,便於生長錐的收集。藉由光學微影與矽深蝕刻技術製作圖章與模板之模仁,以化學氣相沉積抗沾黏之聚對二甲苯(parylene)高分子膜,防止圖章組成材料與矽膜仁上的原生氧化層沾黏。彈性高分子材料─聚二甲基矽氧烷(PDMS)經鑄造、固化及脫模等步驟製造圖章與模板的PDMS高分子模仁,沉積parylene高分子膜於PDMS膜仁上,經由二次複製則可得到侷限細胞貼附區域的模板。以圖章為工具、微接觸印刷為方法,將輔助細胞貼附的生物分子─聚左旋離氨酸(PLL)轉印於基材上,或直接將模板覆蓋於經由PLL修飾的基材表面,藉由PLL所定義出的圖形或模板上的開孔限制細胞可貼附的範圍,同時引導神經突起的生長方向。在細胞培養後第二天即可觀察到神經細胞的散佈與成長已受PLL圖形的限制,細胞體與神經突起持續受到空間上的調控直到細胞死亡。然而,在培養過程中細胞體極容易聚集形成球狀,本文結合微接觸印刷與模板試圖解決聚集現象,由初步結果顯示未來可望藉此法維持細胞體正常貼附與引導神經突起生長。透過上述兩種微製造技術使神經細胞可生長成特定的陣列,以利後續生化分析實驗的進行。
Campbell, D. J., Beckman, K. J., Calderon, C. E., Doolan, P. W., Ottosen, R. M., Ellis, A. B. and Lisensky, G. C. (1999) Replication and Compression of Bulk and Surface Structures with Polydimethylsiloxane Elastomer. J. Chem. Educ. 75(4): 537-541.
Folch, A., Jo, B.-H., Hurtado, O., Beebe, D. J. and Toner, M. (2005) Microfabricated elastomeric stencils for micropatterning cell cultures. Journal of Biomedical Materials Research 52(2): 346-353.
Gabay, T., Jakobs, E., Ben-Jacob, E. and Hanein, Y. (2005) Engineered Self-organization of Neural Networks using Carbon Nanotube Clusters. Physica A 350(2-4): 611-621.
He, Q., Liu, Z., Xiao, P., Liang, R., He, N. and Lu, Z. (2003) Preparation of hydrophilic poly(dimethylsiloxane) stamps by plasma-induced grafting. Langmuir 19(17): 6982-6986.
James, C. D., Davis, R. C., Kam, L., Craighead, H. G., Isaacson, M., Turner, J. N. and Shain W., (1998) Patterned Protein Layers on Solid Substrates by Thin Stamp Microcontact Printing. Langmuir 14(4): 741-744.
James, C. D., Davis, R., Meyer, M., Turner, A., Turner, S., Withers, G., Kam, L., Banker, G., Craighead, H., Isaacson, M., Turner, J. and Shain, W. (2000) Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays. IEEE Trans. Biomed. Eng. 47(1): 17-21.
James, C. D., Spence, A. J. H., Dowell-Mesfin, N. M., Hussain, R. J., Smith, K. L., Craighead, H. G., Isaacson, M. S., Shain, W. and Turner, J. N. (2004) Extracellular recordings from patterned neuronal networks using planar microelectrode arrays. IEEE Trans. Biomed. Eng. 51(9): 1640-1647.
Kim, K. S., Park, S. W., Manohara, H. and Lee, J.-B. (2000) Polydimethylsiloxane (PDMS) for high aspect ratio three-dimensional MEMS. In “Proceedings of the 2000 International Symposium on Mechatronics and Intelligent Mechanical Sysytems for 21 Century”, 55-59, Changwon: Korea
Lauer, L., Klein, C. and Offenh□usser, A. (2001) Spot compliant neuronal networks by structure optimized micro-contact printing. Biomaterials 22(13): 1925-1932.
Park, T. H. and Shuler, M. L. (2003) Integration of Cell Culture and Microfabrication Technology. Biotechnol. Prog. 19(2): 243-253.
Pavlovic, E., Quist, A. P., Nyholm, L., Pallin, A., Gelius, U. and Oscarsson, S. (2003) Patterned Generation of Reactive Thiolsulfinates- Thiolsulfonates on Silicon Oxide by Electrooxidation Using Electromicrocontact Printing. Langmuir 19(24): 10267-10270.
Pompe, T., Fery, A. and Herminghaus, S. (1999) Submicron Contact Printing on Silicon Using Stamp Pads. Langmuir 15(7): 2398-2401.
Quist, A. P., Pavlovic, E. and Oscarsson, S. (2005) Recent advances in microcontact printing. Anal. Bioanal. Chem. 381(3): 591–600.
Sharp, K. G., Blackman, G. S., Glassmaker, N. J., Jagota, A. and Hui, C.-Y. (2004) Effect of Stamp Deformation on the Quality of Microcontact Printing-Theory and Experiment. Langmuir 20(15): 6430-6438.
Sharpe, R. B. A, Burdinski, D., Huskens, J., Zandvliet, H. J. W., Reinhoudt, D. N. and Poelsema, B. (2005) Chemically Patterned Flat Stamps for Microcontact Printing. J. Am. Chem. Soc. 127(29): 10344-10349.
Singhvi, R., Kumar, A., Lopez, G. P., Stephanopoulos, G. N., Wang, D. I. C., Whitesides, G. M. and Ingber, D. E. (1994) Engineering cell shape and function. Science 264(5159): 696-698.
Suh, K. Y., Langer, R. and Lahann, J. (2003) Fabrication of elastomeric stamps with polymer-reinforced sidewalls via chemically selective vapor deposition polymerization of poly(p-xylylene). Appl. Phys. Lett. 83(20): 4250-4252.
Tan, W and Desai, T. A. (2004) Layer-by-layer microfluidics for biomimetic three-dimensional structures. Biomaterials 25(7-8): 1355–1364.
Trimbach, D. C., Al-Hussein, M., de Jeu, W. H., Decr□, M., Broer, D. J., and Bastiaansen, C. W. M. (2004) Hydrophilic Elastomers for Microcontact Printing of Polar Inks. Langmuir 20(11): 4738-4742.
Vogt, A. K., Wrobel, G., Meyer, W., Knoll, W. and Offenh□usser, A. (2005) Synaptic plasticity in micropatterned neuronal networks. Biomaterials 26(15): 2549-2557.
Wyart, C., Ybert, C., Bourdieu, L., Herr, C., Prinz, C. and Chatenay, D. (2002) Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces. J. Neurosci. Methods 117(2): 123-131.
Xia, Y. and Whitesides, G. M. (1998) Soft Lithography. Annu. Rev. Mater. Sci. 28: 153–184.
Zhang, X., Prasad, S., Niyogi, S., Morgan, A., Ozkan M. and Ozkan, C. S. (2005) Guided neurite growth on patterned carbon nanotubes. Sens. Actuator B-Chem. 106(2): 843-850.
Zhao, X.-M., Xia, Y. and Whitesides, G. M. (1997) Soft lithographic methods for nano-fabrication. J. Mater. Chem. 7(7): 1069–1074.
Dow Corning Corporation. (1991) Information About High Technology Silicon Materials