研究生: |
蔡明穎 Cai, Ming-Ying |
---|---|
論文名稱: |
以約瑟夫森結網路模擬單一神經元 Single neuron simulation by using Josephson junction network |
指導教授: |
陳正中
Chen, Jeng-Chung |
口試委員: |
牟中瑜
Mou, Chung-Yu 王明杰 Wang, Ming-Jye |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 118 |
中文關鍵詞: | 神經元 、約瑟夫森結 、超導體 、人造神經元 |
外文關鍵詞: | neuron, Josephson junction, superconductor, artificial neuron |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在討論以超導約瑟夫森結網路從理論上建構人造神經元的構想。與傳統上以侵入性的方法來探究生物大腦的功能不同,透過以單一人造神經元做為基石,我們採用一種自下而上的方法去研究神經元網路。我們設計了一個由兩個約瑟夫森結構成的人造神經元,這兩個約瑟芬森結分別擔任了模擬生物神經元中鈉離子通道與鉀離子通道的角色。我們尤其將注意力放在人造神經元的動態行為上,並以動作電位與閾電流的相位圖來將人造神經元進行分類。我們總共找到了四種不同人造神經元的參數。在論文最後,我簡要地描述一些已經完成的工作,這些工作可以幫助我們了解設計出來的裝置,包含了使用超導鈮約瑟夫森結的晶片設計、低溫量測用的探棒與放大器。我們的工作可能會為建構一種基於人造神經元的人工智慧鋪平一條嶄新的道路,搭建起計算神經科學與生物神經科學的橋樑。
The main theme of this thesis is to theoretically construct a scheme of an
artificial neuron (AN) by employing superconducting Josephson junctions (JJs)
network. Unlike conventional methods using the invasive probes to investigate the
functions of a biology brain, we adopt a bottom-up approach to study neural networks
by using single artificial neuron as a fundamental building block. We design a single
neuron consisted with two JJs, each of which is playing a role simulating the auctions
of the sodium or potassium ion channel in nature neuron. In particular, we focus on
the dynamic behaviors of AN, and use the phase diagram of the action potential and
the threshold currents to catalogued the neutron type. We find circuit parameters
corresponding to four types of AN. In the end, I will briefly describe some pieces of
finished works toward a realization of the device, including a chip design based on
Nb-based JJs, low temperature measurement probe and amplifier. Our work may pave
a novel way to construct artificial intelligence based on AN and bridge the studies of
computational and biology neuroscience.
[1] W. Gerstner, W. M. Kistler, R. Naud and L. Paninski, Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition, Cambridge, England: Cambridge University Press, 2014.
[2] K. H. Jawabri and S. Sharma., "Physiology, Cerebral Cortex Functions," 1 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK538496/. [Accessed 11 11 2021].
[3] A. L. Hodgkin and A. F. Huxley, "A quantitative description of membrane current and its application to conduction and excitation in nerve," The Journal of Physiology, 1952.
[4] L. F. Abbott, "Lapicque’s introduction of the integrate-and-fire model neuron (1907)," Brain Research Bulletin, Vol. 50, Nos. 5/6, pp. 303-304, 1999.
[5] J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasserman, P. V. Minorsky and R. B. Jackson, Campbell Biology 9th edition, NewYork: Pearson, 2011.
[6] P. Dayan and L. Abbott, Theoretical Neuroscience (Computational and Mathematical Modeling of Neural Systems) 1st edition, Cambridge, Massachusetts: The MIT Press, 2005.
[7] E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, Cambridge, Massachusetts (United States): The MIT Press, 2006.
[8] R. FitzHugh, "Impulses and Physiological States in Theoretical Models of Nerve Membrane," Biophysical Journal, 1961.
[9] E. M. Izhikevich, "Simple Model of Spiking Neurons," IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003.
[10] T. Corinne, I. Ramakrishnan, M. Vilas, G. Nathan, F. David, B. Jim, S. Aaron, C. Nicholas, Z. Hongkui, H. Michael, K. Christof and M. Stefan, "Generalized leaky integrate-and-fire models classify multiple neuron types," Nature Communications volume 9, 709, 2018.
[11] S. Dutta, V. Kumar, A. Shukla, N. R. Mohapatra and U. Ganguly, "Leaky Integrate and Fire Neuron by Charge-Discharge Dynamics in Floating-Body MOSFET," Scientific Reports volume 7, 8257, 8 2017.
[12] Krenker, Andrej, J. Bešter and A. Kos, "Introduction to the artificial neural networks," Artificial Neural Networks: Methodological Advances and Biomedical Applications. InTech, 2011.
[13] J. J. Hopfield, "Neural Networks and Physical Systems with Emergent Collective Computational Abilities," Proceedings of the National Academy of Sciences of the USA, 1982.
[14] L. D. HARMON, "Artificial Neuron," SCIENCE, 1959.
[15] X. Zhang, W. Wang, Q. Liu, X. Zhao, J. Wei, R. Cao, Z. Yao, X. Zhu, F. Zhang, H. Lv, S. Long and M. Liu, "An Artificial Neuron Based on a Threshold Switching Memristor," IEEE Electron Device Letters, 2018.
[16] R. Cheng, U. S. Goteti and M. C. Hamilton, "Spiking neuron circuits using superconducting quantum phase-slip junctions," Journal of Applied Physics 124, 152126, 2018.
[17] U. S. Goteti and R. C. Dynes, "Superconducting neural networks with disordered Josephson junction array synaptic networks and leaky integrate-and-fire loop neurons," Journal of Applied Physics 129, 2021.
[18] P. Crotty, D. Schult and K. Segall, "Josephson junction simulation of neurons," Phys. Rev. 82, 011914, 19 7 2010.
[19] M. Tinkham, Introduction to supercoductivity 2nd edition, New York: Dover Publications, 1996.
[20] J. Bardeen, L. N. Cooper and J. R. Schrieffer, "Microscopic Theory of Superconductivity," Phys. Rev. 106, 162, 1957.
[21] K. V.Z. and W. S.A., "Macroscopic Quantization," in Fundamentals of Superconductivity, Boston, MA., Springer, 1990.
[22] M. P. Marder, Condensed Matter Physics 2nd edition, Wiley, 2010.
[23] B. D. Josephson, "Possible new effects in superconductive tunnelling.," Physics letters 1.7, pp. 251-253, 1962.
[24] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-. S. Huang, J. Majer, S. Kumar, S. M. Girvin and R. J. Schoelkopf, "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics," Nature 431, pp. 162-167, 2004.
[25] H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret and R. J. Schoelkopf, "Observation of High Coherence in Josephson Junction Qubits Measured in a Three-Dimensional Circuit QED Architecture," Phys. Rev. Lett. 107, 2011.
[26] T. P. Orlando, J. E. Mooij, L. Tian, C. H. v. d. Wal, L. S. Levitov, S. Lloyd and J. J. Mazo, "Superconducting persistent-current qubit," Phys. Rev. B 60, 1999.
[27] M. Bin, M. C. Gaidis, J. Zmuidzinas and T. G. Phillips, "Low‐noise 1 THz niobium superconducting tunnel junction mixer with a normal metal tuning circuit," Appl. Phys. Lett. 68, 1996.
[28] H. Ekstrom, B. S. Karasik, E. L. Kollberg and K. S. Yngvesson, "Conversion gain and noise of niobium superconducting hot-electron-mixers," IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 4, pp. 938-947, 1995.
[29] S. NAGASAWA, K. HINODE, T. SATOH, M. HIDAKA, H. AKAIKE, A. FUJIMAKI, N. YOSHIKAWA, K. TAKAGI and N. TAKAGI, "Nb 9-Layer Fabrication Process for Superconducting Large-Scale SFQ Circuits and Its Process Evaluation," IEICE Transactions on Electronics 97.3, pp. 132-140, 2014.
[30] B. T. Matthias, T. H. Geballe and V. B. Compton, "Superconductivity," Rev. Mod. Phys. 35, 1963.
[31] J. Eisenstein, “Superconducting Elements,” Rev. Mod. Phys. 26, 1954.
[32] J. D. H. Douglass and R. Meservey, "Energy Gap Measurements by Tunneling Between Superconducting Films. I. Temperature Dependence," Phys. Rev. 135, A19, 1964.
[33] S. E. H. G. H. R. D. Bonnet, “A new measurement of the energy gap in superconducting niobium,” Physics Letters A 25, pp. 452-453, 1967.
[34] S.-L. Wu, Construction of a Scanning SQUID Microscope and study of individual vortex penetration in type II superconducting thin film, PhD. thesis, Department of Physics, National Tsing Hua University, 2008.
[35] D. R. Lide, Hdbk of Chemistry & Physics 75th Edition, New York: CRC Press, 1996-1997.
[36] M. M. K. Jr., “Extraction of inductances of plane thin film superconducting circuits,” Supercond. Sci. Technol. 10, 1997.
[37] E. M. Izhikevich, "Which Model to Use for Cortical Spiking Neurons?," IEEE Transactions on Neural Networks, vol. 15, no. 5, pp. 1063-1070, 9 2004.
[A1] T. Yamamoto, K. Inomata, M. Watanabe, K. Matsuba, T. Miyazaki, W. D. Oliver, Y.
Nakamura, and J. S. Tsai, "Flux-driven Josephson parametric amplifier," Appl. Phys. Lett. 93, 2008
[A2] C. MACKLIN, K. O’BRIEN, D. HOVER, M. E. SCHWARTZ, V. BOLKHOVSKY, X. ZHANG, W.
D. OLIVER, and I. SIDDIQI, "A near–quantum-limited Josephson traveling-wave parametric amplifier," SCIENCE, 2015
[A3] T. C. White, J. Y. Mutus, I.-C. Hoi, R. Barends, B. Campbell, Yu Chen, Z. Chen, B.
Chiaro, A. Dunsworth, E. Jeffrey, J. Kelly, A. Megrant, C. Neill, P. J. J. O'Malley, P. Roushan, D. Sank1, A. Vainsencher, J. Wenner, S. Chaudhuri, J. Gao, and John M. Martinis, "Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching, " Appl. Phys. Lett. 106, 2015
[A4] Osamu Aso, Masateru Tadakuma, and Shu Namiki, "Four-wave mixing in optical fibers
and its applications, " dEp 1, 1999
[A5] Kevin O’Brien, Chris Macklin, Irfan Siddiqi, and Xiang Zhang, "Resonant Phase
Matching of Josephson Junction Traveling Wave Parametric Amplifiers," Phys. Rev. Lett. 113, 2014
[A6] O. Yaakobi, L. Friedland, C. Macklin, and I. Siddiqi, "Parametric amplification in
Josephson junction embedded transmission lines," Phys. Rev. B 87, 2013
[A7] Stefan Pogorzalek, Kirill G. Fedorov, Ling Zhong, Jan Goetz, Friedrich Wulschner,
Michael Fischer, Peter Eder, Edwar Xie, Kunihiro Inomata, Tsuyoshi Yamamoto, Yasunobu Nakamura, Achim Marx, Frank Deppe, and Rudolf Gross, "Hysteretic Flux Response and Nondegenerate Gain of Flux-Driven Josephson Parametric Amplifiers," Phys. Rev. Applied 8, 2017