研究生: |
陳渙中 Chen, Huan-Jhong |
---|---|
論文名稱: |
應用於渾沌光達系統之轉阻放大器 A Transimpedance Amplifier for Chaotic LiDAR System |
指導教授: |
黃柏鈞
Huang, Po-Chiun |
口試委員: |
謝秉璇
Hsieh, Ping-Hsuan 李泰成 Lee, Tai-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 87 |
中文關鍵詞: | 飛時測距 、光達系統 、光電二極體 、轉阻放大器 |
外文關鍵詞: | Time of flight, Light detection and ranging, Photodiode, Transimpedance amplifier |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來隨著AR、VR 乃至於自動駕駛等領域的蓬勃發展,傳統RGB 影像僅包含二維資訊已不敷使用,需要額外引進物體距離或輪廓等三維資訊。光學雷達(LiDAR) 為其之實踐方法之一,其使用了飛時測距(time of flight, ToF) 之概念。傳統上為了因應環境中有多重使用者、多重系統之相互干擾,會使用偽隨機識別碼(pseudorandom code) 之技術,藉由調變出射光,系統進而經由解碼辨別出正確之接收光。混沌光達(chaotic LiDAR) 提出利用半導體雷射之物理特性,於雷射光源直接產生隨機之光訊號,除了可降低系統之複雜性及成本以外,亦可帶來真正的隨機訊號。
此系統之接收端,首先需要雪崩光電二極體(avalanche photodiode, APD) 進行照光,緊接著為轉阻放大器(transimpedance amplifier, TIA) 將電流訊號放大為電壓訊號。為了增加視角(field of view, FoV),需使用較大面積之雪崩光電二極體,隨之而來為較大之寄生電容。此研究主軸為轉阻放大器,我們所設計之轉阻放大器需能克服較大之寄生電容。進一步我們將分析雜訊(noise),透過降低雜訊以提高訊號雜訊比(SNR) 進而提高系統之精確度(precision)。
我們提出了使用共閘極(common gate) 做為第一級放大器,搭配電阻作為回授(feedback)之架構。考量雪崩光電二極體之響應率(responsivity)及照光強度之下,我們將轉阻放大器之增益設定在2 kΩ。此架構有著極低之輸入阻抗(input impedance),可以有效克服前述之寄生電容。在3 pF之寄生電容之下,有著450 MHz之頻寬,即使將寄生電容提高到12 pF,仍然有著306 MHz的頻寬。對於輸入電壓微調,有著±50 mV之範圍。而輸入端雜訊(input referred noise) 表現則為22.3 pA/√Hz。
AR, VR and auto drive are fast developing in recent years. We need 3D information such as the distance or the shape of the object. The light detection and ranging (LiDAR) system can put it into practice. The system features with the time of flight (ToF). To conquer the multi-user and multi-system interference, we usually use the pseudorandom code modutation technique in traditional. The chaotic LiDAR features with the physical
properties of semiconductor laser which can directly generate random light signal. It can make the complexity and the cost lower. Furthermore, it can bring truly random signal. At the receiving end of the system, we will need an avalanche photodiode (APD) for illumination at first. The transimpedance amplifier (TIA) will then amplify the current signal into the voltage signal. To increase the field of view (FoV), we need large photodetector area which follows by a large parasitic capacitance. The research mainly focus on the transimpedance amplifier. We design a transimpedance amplifier which
can overcome the large parasitic capacitance. Furthermore, we analysis the noise performance. By increasing the signal to noise ratio (SNR), we can increase the precision of the system.
We use common gate structure as the first stage amplifier and a resistor as feedback network. In consider with the photodetector responsivity and the illumination intensity, the gain of the TIA is set to 2 kΩ. The structure has low input impedance which can conquer the parasitic capacitance mentioned above. Under the condition of 3 pF parasitic capacitance, the bandwidth achieves 450 MHz. Even though the parasitic capacitance increases to 12 pF, it still has the 306 MHz bandwidth. The input bias tuning range is ±50 mV. The input referred noise is 22.3 pA/√Hz.
[1] E. DANDIL and K. K. ÇEVİK, “Computer vision based distance measurement system using stereo camera view,” in 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2019, pp. 1–4.
[2] S. Zhang, “High-speed 3D shape measurement with structured light methods: A review,” Optics and Lasers in Engineering, vol. 106, pp. 119–131, 2018.
[3] C. Zhang, “CMOS SPAD sensors for 3d time-of-flight imaging, LiDAR and ultrahigh speed cameras,” Dissertation (TU Delft), Delft University of Technology, 2019.
[4] L. Li, “Time-of-flight camera - an introduction,” Technical white paper, no. SLOA190B, Jan. 2014.
[5] N. Takeuchi, N. Sugimoto, H. Baba, and K. Sakurai, “Random modulation cw lidar,” Appl. Opt., vol. 22, no. 9, pp. 1382–1386, May. 1983.
[6] F.-Y. Lin and J.-M. Liu, “Chaotic lidar,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, no. 5, pp. 991–997, Sept.-Oct. 2004.
[7] Y.-C. Lin, P.-H. Hsieh, J.-L. Hong, Y.-H. Lai, J.-D. Chen, F.-Y. Lin, Y.-H. Huang, and P.-C. Huang, “A cross-correlation-based time-of-flight design for pulsed chaos lidar systems,” IEEE Solid-State Circuits Letters, vol. 5, pp. 138–141, 2022.
[8] 楊靖安、巫冠緯、孫嘉隆、蔡大傑, “3D 脈衝式混沌光達,” 中技社科技獎學金- 創意獎學金, 2020.
[9] APD430x operation manual, Thorlabs, 2020.
[10] “Introduction to the time-of-flight (ToF) system design,” User’s Guide, no. SBAU219D, Dec. 2013.
[11] B. Razavi, Design of analog CMOS integrated circuits (2/e). McGraw-Hill Education, 2016.
[12] S. M. Park and H.-J. Yoo, “1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit ethernet applications,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 112–121, Jan. 2004.
[13] B. Razavi, “The transimpedance amplifier,” IEEE Solid-State Circuits Magazine, vol. 11, no. 1, pp. 10–97, 2019.
[14] B. Razavi, RF microelectronics (2/e). Prentice Hall, 2012.
[15] B. Razavi, Design of integrated circuits for optical communications (2/e). Wiley, 2012.
[16] A. Bozorg and R. B. Staszewski, “A 0.02–4.5-GHz LN(T)A in 28-nm CMOS for 5G exploiting noise reduction and current reuse,” IEEE Journal of Solid-State Circuits, vol. 56, no. 2, pp. 404–415, Feb. 2021.
[17] B. Abdollahi, B. Mesgari, S. Saeedi, E. Roshanshomal, A. Nabavi, and H. Zimmermann, “Transconductance boosting technique for bandwidth extension in lowvoltage and low-noise optical TIAs,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 834–838, Mar. 2022.
[18] A. Atef, M. Atef, E. E. M. Khaled, and M. Abbas, “CMOS transimpedance amplifiers for biomedical applications: A comparative study,” IEEE Circuits and Systems Magazine, vol. 20, no. 1, pp. 12–31, 2020.
[19] P. Wang, M. Ye, X. Xia, X. Zheng, Y. Li, and Y. Zhao, “A multi-channel low-noise analog front end circuit for linear LADAR,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 7, pp. 1209–1213, July 2020.
[20] R. Y. Chen and Z.-Y. Yang, “CMOS transimpedance amplifier for gigabit-persecond optical wireless communications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 5, pp. 418–422, May. 2016.
[21] M. H. Taghavi, L. Belostotski, J. W. Haslett, and P. Ahmadi, “10-Gb/s 0.13- μm CMOS inductorless modified-RGC transimpedance amplifier,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 8, pp. 1971–1980, Aug. 2015.
[22] D. Yoon, J.-E. Joo, and S. M. Park, “Mirrored current-conveyor transimpedance amplifier for home monitoring LiDAR sensors,” IEEE Sensors Journal, vol. 21, no. 5, pp. 5589–5597, Mar. 2021.
[23] R. Liu, J. Zhu, Y. Jiang, F. Li, C. Jiang, and Z. Meng, “Three-channel CMOS transimpedance amplifier for LiDAR sensor receiver,” Journal of Systems Engineering
and Electronics, vol. 35, no. 1, pp. 74–80, 2024.
[24] D. Michelon, E. Bergeret, M. Egels, and A. Di Giacomo, “Wire-bonds used as matching inductor in RF energy harvesting applications,” in 2014 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), 2014, pp. 1–4.