簡易檢索 / 詳目顯示

研究生: 楊智竣
Yang, Chih Chun
論文名稱: 利用濃度梯度產生器晶片培養並觀察藍綠菌PCC 7942品系於BG-11培養液和營養源的生長情形並找出最佳化條件
Using Concentration Gradient Generator Chip to Cultivate, Observe Growing Phenomenon of Cyanobacteria PCC7942 in BG-11 Medium and Nutrients
指導教授: 饒達仁
Yao, Da Jeng
口試委員: 沈若樸
呂明璋
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 107
中文關鍵詞: 藍綠菌BG-11培養液濃度梯度產生器PDMS吸光值(O.D.)
外文關鍵詞: concentration gradient generator, BG-11 medium
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藍綠菌,又稱為藍綠藻。在地球上已存在約35億年,是目前以來發現到最早的光合產氧生物。而此研究用的藍綠菌PCC 7942則是為其中一品系。藍綠菌的萃取物除了是現今生技產業很著名的保健食品外,也是化工和生物科技界所謂的績優股。因為容易進行基因轉殖並大量培養,可以產生很多替代能源。培養藍綠藻的水容液BG-11由10種成分組成,其配方自從公開發表後,濃度就一直是固定的。但很多研究員都試著改變各成分的濃度,想找到更適合藍綠菌成長的環境,縮短成長周期,或是增加細胞分裂速度。然而10種成分,若是每一次都只改變一種成分,該種成分又配成好多種濃度,再分別放置燒瓶培養,不僅相當耗時,也很浪費實驗空間和藥品的量。幸運的是,微機電(MEMS)蓬勃發展,很多實驗都能縮小到在一片晶片上進行,如此可以縮小實驗空間和耗材成本。此實驗便利用微機電技術中的黃光微影製程,去做母模,並用軟微影技術用2層PDMS做出含有第一層的主流道和第二層的儲存槽,再利用氧電漿接合2層PDMS。此論文將運用1維的裝置,並利用樹狀分支的概念,從2個流道,分成3個流道,再從3個分支成4個,最後分支成6個,並延伸到儲存槽。如此一來,將兩種不同濃度的溶液從入口端打入,就能產生濃度梯度。此裝置稱為濃度梯度產生器。每一格儲存槽量約為840μl。有了此裝置一次就能產生6種不濃濃度的環境去培養藍綠菌,大幅壓縮實驗空間和成本。培養在儲存槽的藍綠菌,經過3天的生長,有些能用顏色差異看出生長優劣,但都要去量測吸光值(O.D.),做為生長情形好或壞的判斷依據。此外,本實驗還探討除了改變固定成分的個別濃度對藍綠菌生長的情形外,我們還額外加入營養源,例如維生素和尿素去觀察是否有利於藍綠菌的生長表現。最後實驗部分會利用傳統藍綠菌搖瓶培養去驗證生長結果是否和我們在微流體晶片所培養下的藍綠菌有相似的生長趨勢。


    Cyanobacteria are phylum of bacteria that obtain their energy through photosynthesis. They are also known as Cyanophyta. It is known as the most famous transformation model in microorganisms. BG-11 medium which is composed of nine ingredients and carbon sources with specifically combinatorial ratio is used to cultivate cyanobacteria. One approach to improve the growth speed of cyanobacteria in a laboratory setting is to optimize the cultivation medium and tailor the supplements according to the microorganism’s need. A general cultivation medium for S. elongatus PCC7942 named BG-11 had been developed and is a standard prescription. However, many biochemical researchers still want to figure out a new recipe to make a new concentration ratio of ten ingredients to let the cyanobacteria grow faster and efficiently. Nowadays, with the advanced of nano and micro technology techniques, many experiments can be conducted on the small area or chips with a little restriction especially in biochemical or biomedical experiments used the MEMS techniques. In experiments, we would like to know the influence of each ingredient to the growth effect of cyanobacteria, therefore, we used the UV lithography to fabricate the concentration gradient generator (CGG) mold and cultivated gene transfer cyanobacteria pcc7942 in PDMS made chambers by using a high throughput micro channel design. Compared to conventional methods by cultivated manually in large amount of medium in big beakers, we used the microfluidics concentration gradient system to cultivated automatically and only with small amount of medium in biochips. It saves the experimental costs and areas as well. In this chip, we can observe six results detected by absorbance value (Aλ) with different concentration in same ingredient at the same time in 1D chips. Besides, we also add the nutrients such as vitamin and urea to cultivate cyanobacteria to find out whether those exotic nutrients will stimulate the growth of cyanobacteria. Finally, we will show the growth data cultivated by traditional flask methods to certify the similar trend with the cultivation in microfluidics chips.

    目錄 摘要 2 ABSTRACT 3 第一章 緒論 7 1.1 前言與研究背景 7 1.2 研究動機與目的 8 第二章 文獻回顧 11 第三章 傳統搖瓶培養法 32 3.1. 搖瓶培養步驟 32 3.2. 如何改善大體積培養方式 35 第四章 實驗架構與方法 36 4.1. 晶片結構設計 36 4.2. 數值模擬 36 4.3. 濃度梯度晶片製作 38 4.3.1. 基底的製備 40 4.3.2. PDMS翻模 41 4.3.3. 氧電漿晶片接合 42 4.4. 實驗儀器與系統架構 44 4.4.1. 實驗儀器 44 4.4.2. 系統架構 46 4.5. 實驗樣本處理 46 4.5.1. 藍綠菌回溶法(Re-suspension) 46 4.5.2. 藍綠菌的培養液配製 47 第五章 研究方法 49 5.1. 幫浦設定 49 5.2. 建立一個完整濃度梯度表格 49 5.3. 測試晶片中儲存槽的最小和最大儲存量 52 5.4. 實驗前的生物晶片前處理 53 5.5. 利用注射幫浦製造濃度梯度培養環境 54 第六章 濃度梯度晶片實驗結果 57 6.1. 實驗結果判定的根據及原理 57 6.2. 分別單獨改變培養液中10種成分對藍綠菌的生長影響 59 6.2.1. 第一類- BG1,BG5 和BG6為藍綠菌生長必備條件的成分 59 6.2.2. 第二類-培養液中缺乏BG2,3, 4, 7和9時仍然使藍綠菌正常生長 62 6.2.3. 第三類微量元素和碳源的濃度明顯影響藍綠菌生長表現 68 6.3. 額外加入營養源至培養液BG-11中,並培養觀察藍綠菌對營養源的生長成效 71 6.3.1. 在BG-11培養液中加入乙酸(Acetate) 72 6.3.2. 在BG-11培養液中加入尿素(Urea) 73 6.3.3. 在BG-11培養液中加入維生素B1(Thiamine) 74 6.3.4. 在BG-11培養液中加入維生素B7(Biotin) 76 6.3.5. 在BG-11培養液中加入維生素B12(Cobalamin) 78 第七章 傳統搖瓶培養法驗證微流體晶片結果 81 7.1. 搖瓶培養結果 81 7.1.1. 驗證微流體系統培養結果,當分別缺乏BG-1,5,6對生長的影響 81 7.1.2. 驗證微流體系統培養結果,當分別缺乏BG-2,3,4,7,8,9對生長的影響 86 7.1.3. 同時缺乏BG-2,4,7,8,9 95 7.1.4. 碳源,BG1,5,8兩倍濃度的探討 96 第八章 結論與未來展望 99 8.1. 結論 99 8.2. 此實驗所使用的濃度梯度晶片探討 100 8.3. 藍綠菌代謝途徑的探討 100 8.4. 改善晶片微流道之設計以及微小化 102 第九章 參考文獻 105

    [1] B. Ziaie, A. Baldi, M. Lei, Y. D. Gu, and R. A. Siegel, "Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery," Advanced Drug Delivery Reviews, vol. 56, pp. 145-172, Feb 2004.
    [2] M. Daneshmand and R. R. Mansour, "RF MEMS Devices for Communication Systems," in Advances in Imaging and Electron Physics, Vol 174: Silicon-Based Millimeter-Wave Technology Measurement, Modeling and Applications. vol. 174, M. J. Deen, Ed., ed, 2012, pp. 349-390.
    [3] R. Bashir, "BioMEMS: state-of-the-art in detection, opportunities and prospects," Advanced Drug Delivery Reviews, vol. 56, pp. 1565-1586, 2004.
    [4] O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y. A. Peter, and H. Zappe, "Optical MEMS: From Micromirrors to Complex Systems," Journal of Microelectromechanical Systems, vol. 23, pp. 517-538, Jun 2014.
    [5] P. M. Shih, D. Y. Wu, A. Latifi, S. D. Axen, D. P. Fewer, E. Talla, A. Calteau, F. Cai, N. T. de Marsac, R. Rippka, M. Herdman, K. Sivonen, T. Coursin, T. Laurent, L. Goodwin, M. Nolan, K. W. Davenport, C. S. Han, E. M. Rubin, J. A. Eisen, T. Woyke, M. Gugger, and C. A. Kerfeld, "Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing," Proceedings of the National Academy of Sciences of the United States of America, vol. 110, pp. 1053-1058, Jan 2013.
    [6] C. B. Field, M. J. Behrenfeld, J. T. Randerson, and P. Falkowski, "Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components," Science, vol. 281, pp. 237-240, July 10, 1998 1998.
    [7] J. Asong, M. A. Wolfert, K. K. Maiti, D. Miller, and G. J. Boons, "Binding and Cellular Activation Studies Reveal That Toll-like Receptor 2 Can Differentially Recognize Peptidoglycan from Gram-positive and Gram-negative Bacteria," Journal of Biological Chemistry, vol. 284, pp. 8634-8644, Mar 2009.
    [8] Z. A. Abro, B. A. Alemu, and M. A. Hanjra, "Policies for Agricultural Productivity Growth and Poverty Reduction in Rural Ethiopia," World Development, vol. 59, pp. 461-474, Jul 2014.
    [9] E. J. Boekema, A. F. Boonstra, J. P. Dekker, and M. Rogner, "ELECTRON-MICROSCOPIC STRUCTURAL-ANALYSIS OF PHOTOSYSTEM-I, PHOTOSYSTEM-II, AND THE CYTOCHROME-B6/F COMPLEX FROM GREEN PLANTS AND CYANOBACTERIA," Journal of Bioenergetics and Biomembranes, vol. 26, pp. 17-29, Feb 1994.
    [10] R. B. Winter and P. H. Vonhippel, "DIFFUSION-DRIVEN MECHANISMS OF PROTEIN TRANSLOCATION ON NUCLEIC-ACIDS .2. THE ESCHERICHIA-COLI REPRESSOR-OPERATOR INTERACTION - EQUILIBRIUM MEASUREMENTS," Biochemistry, vol. 20, pp. 6948-6960, 1981 1981.
    [11] A. Zaiour, M. Hageali, J. M. Koebel, A. Bentz, and P. Siffert, "EQUILIBRIUM SEGREGATION COEFFICIENT AND LIQUID DIFFUSION-COEFFICIENT OF SOME IMPURITIES IN TELLURIUM," Applied Physics a-Materials Science & Processing, vol. 43, pp. 219-222, Jul 1987.
    [12] E. D. la Barrera, "On the sesquicentennial of Fick's laws of diffusion," Nat Struct Mol Biol, vol. 12, pp. 280-280, 2005.
    [13] P. Bordat, F. Affouard, M. Descamps, and F. Muller-Plathe, "The breakdown of the Stokes-Einstein relation in supercooled binary liquids," Journal of Physics-Condensed Matter, vol. 15, pp. 5397-5407, Aug 20 2003.
    [14] A. Tirella, M. Marano, F. Vozzi, and A. Ahluwalia, "A microfluidic gradient maker for toxicity testing of bupivacaine and lidocaine," Toxicology in Vitro, vol. 22, pp. 1957-1964, Dec 2008.
    [15] W. Yi, M. Tamal, and L. Qiao, "Systematic modeling of microfluidic concentration gradient generators," Journal of Micromechanics and Microengineering, vol. 16, p. 2128, 2006.
    [16] H. Mao, T. Yang, and P. S. Cremer, "Design and Characterization of Immobilized Enzymes in Microfluidic Systems," Analytical Chemistry, vol. 74, pp. 379-385, 2002/01/01 2002.
    [17] D. Liu, L. Wang, R. Zhong, B. Li, N. Ye, X. Liu, and B. Lin, "Parallel microfluidic networks for studying cellular response to chemical modulation," Journal of Biotechnology, vol. 131, pp. 286-292, 2007.
    [18] N. L. Jeon, S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. Whitesides, "Generation of Solution and Surface Gradients Using Microfluidic Systems," Langmuir, vol. 16, pp. 8311-8316, 2000/10/01 2000.
    [19] M. Yamada, T. Hirano, M. Yasuda, and M. Seki, "A microfluidic flow distributor generating stepwise concentrations for high-throughput biochemical processing," Lab on a Chip, vol. 6, pp. 179-184, 2006.
    [20] F. Yang, Z. Chen, J. Pan, X. Li, J. Feng, and H. Yang, "An integrated microfluidic array system for evaluating toxicity and teratogenicity of drugs on embryonic zebrafish developmental dynamics," Biomicrofluidics, vol. 5, p. 024115, 2011.
    [21] L. Wang, W. Liu, Y. Wang, J.-c. Wang, Q. Tu, R. Liu, and J. Wang, "Construction of oxygen and chemical concentration gradients in a single microfluidic device for studying tumor cell-drug interactions in a dynamic hypoxia microenvironment," Lab on a Chip, vol. 13, pp. 695-705, 2013.
    [22] C.-G. Yang, Y.-F. Wu, Z.-R. Xu, and J.-H. Wang, "A radial microfluidic concentration gradient generator with high-density channels for cell apoptosis assay," Lab on a Chip, vol. 11, pp. 3305-3312, 2011.
    [23] O. Francais, B. Mahe, A. Dimitracopoulos, M. C. Julien, J. P. Lefevre, and B. Le Pioufle, "Digital concentration gradient generators on a microfluidic chip," in Design, Test, Integration & Packaging of MEMS/MOEMS, 2009. MEMS/MOEMS '09. Symposium on, 2009, pp. 406-409.
    [24] J. TIMMER, T. G. MÜLLER, I. SWAMEYE, O. SANDRA, and U. KLINGMÜLLER, "MODELING THE NONLINEAR DYNAMICS OF CELLULAR SIGNAL TRANSDUCTION," International Journal of Bifurcation and Chaos, vol. 14, pp. 2069-2079, 2004.
    [25] J. Y. Yun, S. Jambovane, S.-K. Kim, S.-H. Cho, E. C. Duin, and J. W. Hong, "Log-scale Dose Response of Inhibitors on a Chip," Analytical Chemistry, vol. 83, pp. 6148-6153, 2011.
    [26] H. Berberoglu, J. Jay, and L. Pilon, "Effect of nutrient media on photobiological hydrogen production by Anabaena variabilis ATCC 29413," International Journal of Hydrogen Energy, vol. 33, pp. 1172-1184, Feb 2008.
    [27] A. Ernst, M. Deicher, P. M. J. Herman, and U. I. A. Wollenzien, "Nitrate and Phosphate Affect Cultivability of Cyanobacteria from Environments with Low Nutrient Levels," Applied and Environmental Microbiology, vol. 71, pp. 3379-3383, 2005.
    [28] J. Q. Shi, Z. X. Wu, and L. R. Song, "Physiological and molecular responses to calcium supplementation in Microcystis aeruginosa (Cyanobacteria)," New Zealand Journal of Marine and Freshwater Research, vol. 47, pp. 51-61, 2013/03/01 2012.
    [29] J. Raven, M. W. Evans, and R. Korb, "The role of trace metals in photosynthetic electron transport in O2-evolving organisms," Photosynthesis Research, vol. 60, pp. 111-150, 1999/05/01 1999.
    [30] R. J. Theriault, "Heterotrophic Growth and Production of Xanthophylls by Chlorella pyrenoidosa," Applied Microbiology, vol. 13, pp. 402-416, 1965.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE