研究生: |
吳尚霖 Wu, Shan-Lin |
---|---|
論文名稱: |
多鐵材料鉍鐵氧基礎電性量測與電晶體應用 Transport properties of multiferroic BiFeO3 transistors |
指導教授: |
邱博文
Chiu, Po-Wen |
口試委員: |
陳啟東
何孟書 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 鉍鐵氧 、電晶體 、疇區壁 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,對於多鐵性材料的研究開始在學術界引起一股風潮。因為多鐵性材料本身特殊性質,讓我們有了製作新穎的電子元件的契機,但可惜的是,許多的多鐵材料在室溫下都將失去其多鐵性。而本論文所利用的材料鉍鐵氧(BiFeO3),不論是居禮溫度或著是尼爾溫度都是高於室溫的,這樣的特色使得鉍鐵氧在許多的多鐵材料中脫穎而出,成為最有希望的先進材料。
但可惜的是,由於鉍鐵氧本身的能隙過大,致使雖然具有優秀的室溫多鐵性,但卻因為其導電性極差,所以極難應用在電子元件中。此時,存在於鉍鐵氧材料上的疇區壁,給予了鉍鐵氧材料一個走上真正應用道路的機會。因為不論在理論上,或著是實驗中,都已證明了疇區壁可以有效的提升鉍鐵氧薄膜的導電性。正因為如此,本論文希望利用存在鉍鐵氧薄膜上疇區壁的特性,加以分析希望最終可以利用"場效"來調控甚至開關疇區壁上的電流。
而本論文前兩章,將會藉由文獻回顧的方式。除了介紹鉍鐵氧這樣特殊的多鐵特性外,也會在過程中將疇區壁的重要性以及特色點出。而第三章將介紹如何利用脈衝雷射沉積法來製備我們所使用的鉍鐵氧薄膜,也會將如何利用探針技術來定義疇區壁的特性以及品質的方法做一個簡單的介紹。最後第四章以及第五章除了將我們如何製備元件的方法詳細敘述外,也將會揭露疇區壁上的傳輸特性以及詳細介紹所製作的電晶體的電性以及分析。
[1] BARDEEN, J. & BRATTAIN, W. THE TRANSISTOR, A SEMI-
CONDUCTOR TRIODE. PHYSICAL REVIEW 74, 230{231
(1948).
[2] Gri_ths, D. Introduction to Electrodynamics. 16 May 2011 (1999).
[3] Kittel, C. Introduction to Solid State Physics. 16 May 2011 (1995).
[4] hysteresis loop. http://www.doitpoms.ac.uk/tlplib/ferroelectrics/printall.php
.[5] FISCHER, P., POLOMSKA, M., SOSNOWSKA, I. & SZYMANSKI, M. TEMPERATURE-DEPENDENCE OF THE CRYSTAL AND MAGNETIC STRUCTURES OF BIFEO3. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS 13, 1931-1940 (1980).
[6] Chu YH, H. M. e. a., Martin LW. Controlling magnetism with multiferroics. MATERIALS TODAY 10, 16-23 (2007).
[7] Y.H, C.多鐵材料鉍鐵氧之磁電耦合與應用, 物理雙月刊,31(2009).
[8] Ederer C, S. N. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. PHYSICAL REVIEW B 71 (2005).
[9] Li, M. et al. Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches. NANOTECHNOLOGY 21 (2010).
[10] Seidel, J. et al. Conduction at domain walls in oxide multiferroics. NATURE MATERIALS 8, 229-234 (2009).
[11] Thomas, L. et al. Resonant amplication of magnetic domain-wall motion by a train of current pulses. SCIENCE 315, 1553-1556(2007).
[12] Pivratska, V., J. & Janovec. Pyromagnetic domain walls connecting antiferromagnetic non-ferroelastic magnetoelectric domains. Ferroelectrics 204 (1997).
[13] Privratska, J. & Janovec, V. Spontaneous polarization and or magnetization in non-ferroelastic domain walls: Symmetry predictions.FERROELECTRICS 222, 281{290 (1999). 5th International Symposium on Ferroic Domains and Mesoscopic Structures (ISFD-5),UNIVERSITY PK, PENNSYLVANIA, APR 06-10, 1998.
[14] Goltsev, A., Pisarev, R., Lottermoser, T. & Fiebig, M. Structure and interaction of antiferromagnetic domain walls in hexagonal YMnO3.PHYSICAL REVIEW LETTERS 90 (2003).
[15] Mostovoy, M. Ferroelectricity in spiral magnets. PHYSICAL REVIEW LETTERS 96 (2006).
[16] Aird, A. & Salje, E. Sheet superconductivity in twin walls:experimental evidence of WO3-x. JOURNAL OF PHYSICS-CONDENSED MATTER 10, L377-L380 (1998).
[17] Streier, S. et al. Domain patterns in epitaxial rhombohedral fer-
roelectric lms. I. Geometry and experiments. JOURNAL OF APPLIED PHYSICS 83, 2742-2753 (1998).
[18] Meyer, B. & Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3. PHYSICAL REVIEW B 65 (2002).
[19] Neaton, J., Ederer, C., Waghmare, U., Spaldin, N. & Rabe, K. First-
principles study of spontaneous polarization in multiferroic BiFeO3.PHYSICAL REVIEW B 71 (2005).
[20] Li, J. et al. Dramatically enhanced polarization in (001), (101),and (111) BiFeO3 thin lms due to epitiaxial-induced transitions.
APPLIED PHYSICS LETTERS 84, 5261{5263 (2004).
[21] Ravindran, P., Vidya, R., Kjekshus, A., Fjellvag, H. & Eriksson,O. Theoretical investigation of magnetoelectric behavior in BiFeO3.PHYSICAL REVIEW B 74 (2006).
[22] Lebeugle, D. et al. Electric-eld-induced spin op in BiFeO3 single
crystals at room temperature. PHYSICAL REVIEW LETTERS 100 (2008).
[23] Pascal Co., Ltd., 1-16-4 Showa-cho, Abeno-ku, Osaka, 545-0011
Japan. Operation manual of vacuum system for Mobile-Combi Laser MBE system, 1.0 edn. (2009).
[24] Zalesskii, A., Frolov, A., Khimich, T. & Bush, A. Composition-induced transition of spin-modulated structure into a uniform anti-ferromagnetic state in a Bi1-xLaxFeO3 system studied using Fe-57NMR. PHYSICS OF THE SOLID STATE 45, 141-145 (2003).
[25] yuan Chen, S. Ultrafast magnetization reversal with circularly polarized pulse laser and time resolved pump-probe technique. Master'sthesis, National Central University (2008).
[26] Michael N. R. Ashfold, G. M. F., Frederik Claeyssens & Henley, S. J.
Pulsed laser ablation and deposition of thin lms. Chem. Soc. Rev.,33, 23-31 (2004).
[27] Ichimiya, A. Reection high-energy electron diraction (2004).
[28] Rheed measurement system. http://britneyspears.ac/physics/fabrication/fabrication.htm
.[29] oger Proksch & Kalinin, S. Piezoresponse Force Microscopy with Asylum Research AFMs. Asylum Research.
[30] Zavaliche, F. et al. Polarization switching in epitaxial BiFeO3 APPLIED PHYSICS LETTERS 87 (2005).
[31] Chu, Y.-H. et al. Nanoscale Control of Domain Architectures in BiFeO3 Thin Films. NANO LETTERS 9, 1726{1730 (2009).
[32] Liu, G.-Z. et al. E_ects of interfacial polarization on the dielectric properties of BiFeO3 thin _lm capacitors. APPLIED PHYSICS LETTERS 92 (2008).
[33] Yuan, G. L., Martin, L. W., Ramesh, R. & Uedono, A. The dependence of oxygen vacancy distributions in BiFeO3 _lms on oxygen pressure and substrate. APPLIED PHYSICS LETTERS 95 (2009).
[34] Clark, S. J. & Robertson, J. Energy levels of oxygen vacancies in
BiFeO3 by screened exchange. APPLIED PHYSICS LETTERS 94 (2009).
[35] Seidel, J. et al. Domain Wall Conductivity in La-Doped BiFeO3. PHYSICAL REVIEW LETTERS 105 (2010).
[36] Bartels, M. et al. Impurity-induced resistivity of ferroelastic domain walls in doped lead phosphate. JOURNAL OF PHYSICS-CONDENSED MATTER 15, 957-962 (2003).
[37] Chrisey, G. K., Douglas B.; Hubler. Pulsed Laser Deposition of Thin Films (John Wiley & Sons, 1994).
[38] Chu, Y.-H. et al. Electric-_eld control of local ferromagnetism using a magnetoelectric multiferroic. NATURE MATERIALS 7, 478-482(2008).
[39] Ederer, C. & Spaldin, N. Weak ferromagnetism and magnetoelectric
coupling in bismuth ferrite. PHYSICAL REVIEW B 71 (2005).
[40] Harnagea, C. Local piezoelectric response and domain structures in ferroelectric thin lms investigated by voltage-modulated force microscopy. Ph.D. thesis, Mathematisch-Naturwissenschaftlich-Technischen Fakultät,Martin-Luther-Universität Halle Wittenberg (2001).
[41] Maksymovych, P. et al. Polarization Control of Electron Tunneling into Ferroelectric Surfaces. SCIENCE 324, 1421{1425 (2009).
[42] Martin, L. et al. Multiferroics and magnetoelectrics: thin lms and nanostructures. Journal of Physics: Condensed matter 20, 434220
(2008). URL http://doc.utwente.nl/75212/.
[43] SMOLENSKII, G., ISUPOV, V., AGRANOVSKAYA, A. &KRAINIK, N. NEW FERROELECTRICS OF COMPLEX COMPOSITION .4. SOVIET PHYSICS-SOLID STATE 2, 2651-2654(1961).
[44] Yang, C. H. et al. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 lms. NATURE MATERIALS 8, 485{493 (2009).
[45] Yang, H.,Wang, Y. Q.,Wang, H. & Jia, Q. X. Oxygen concentration
and its effect on the leakage current in BiFeO3 thin lms. APPLIED PHYSICS LETTERS 96 (2010).
[46] Ye, J.-H. Preparation and transport properties of organic spin valve CrO2 / C60 / CrO2. Master's thesis, National Tsing Hua University (2009).
[47] Yuan, G. L., Martin, L. W., Ramesh, R. & Uedono, A. The dependence of oxygen vacancy distributions in BiFeO3 on oxygen pressure and substrate. APPLIED PHYSICS LETTERS 95 (2009).
[48] Pascal Co., Ltd., 1-16-4 Showa-cho, Abeno-ku, Osaka, 545-0011 Japan. Operation manual for PA-ARH-100D CF34-mount compact 30kV RHEED system with double-stage di_erential pumping,1.0 edn. (2007).