簡易檢索 / 詳目顯示

研究生: 方瑞達
Ruei-Dar Fang
論文名稱: DVB-T/H行動基頻接收機之設計與實現
Design and Implementation of a DVB-T/H Baseband Receiver for Mobile Reception
指導教授: 馬席彬
Hsi-Pin Ma
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 95
語文別: 英文
論文頁數: 117
中文關鍵詞: 地面/手持式數位影像廣播行動內插器二次迴歸曲線快速傅利葉轉換正交分頻多工
外文關鍵詞: DVB-T/H, Mobile, Interpolator, Second Order Regression Curve, FFT, OFDM
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討應用於地面/手持式數位影像廣播(DVB-T/H)行動式接收機,其內容包含先前相關研究的研讀,系統模擬與架構設計,以及電路設計和晶片實現。

    許多關於接收的研究已經被討論過包括同步、載波頻率漂移、取樣頻率偏移。基於這些經過充分研究的接收方法,本論文提出了一個具有低複雜度及高效能的行動接機。本接收機最主要的是行動式等化器。接收機主要是使用一個二階回歸內插器 (Second Order Regression Interpolator)。主要的構想是依據已得到的通道資訊找出一條二次曲線。這個內插器可以分成兩部份,一個是曲線係數的取得,另一個是通道響應的產生。為了增加通道的可靠性,把舊的通道資訊用線性延伸 (Linear Extension) 的方法得新的通道響應。

    本論文中,系統模擬建立在F1和P1的靜態通道,還有TU6的行動通道加上加成性白高斯雜訊模型。TU6行動通道是依照Jakes頻譜而產生的。模擬進行在靜態還有動態的通道中。

    為了簡化電路面積消耗,快速傳利葉轉換 (Fast Fourier Transform) 採用混合基數的架構,而主要的基數為16。電路採用暫存器交換層級語言描述 (RTL) ,並經由場效可程式閘陣列 (FPGA) 的積體電路設計流程完成設計,最後使用Xilinx Virtex XC4VLX60來實現設計。本電路操作頻率一般為36.57 MHz,此電路支援2k、4k、8k點的快速傳利葉轉換。

    在電路實現後,一些增強接收機的功能也被提出,例如內部載波相互干擾的降低和硬體共用,這些技術提供了在未來實現一個更優秀地面/手持式數位廣播接收機的契機。


    In this thesis, standard specification study, functional simulation, architecture design and circuit design along with FPGA implementation of multiple-point FFT, multiple constellations, and multiple guard interval ratio is presented.

    Several receiving techniques are discussed, including synchronization, CFO compensation, and SFO compensation. Based on these receiving techniques, a mobile receiver architecture with low complexity and high performance is proposed. The key point of proposed receiver is the mobile equalizer. The proposed equalizer architecture is implemented by a second order regression interpolater. The key idea is to find a quadratic curve according to the channel information now. This interpolater is divided into two parts called the acquisition of interpolation coefficients and the channel response generation. To enhance the reliability of channel information, the new channel response is predicted by linear extension of old channel information.

    Simulations are based on the F1 channel, P1 channel, and mobile TU6 channel with white noise. The mobile TU6 channel is based on the Jakes Doppler spectrum. Simulations are under static channels and dynamic channels.

    To minimum the area of the proposed receiver, the FFT is implemented in mixed-radix based on 16-point FFT. The proposed receiver is implemented with synthesizable Verilog RTL codes by FPGA design flow. The receiver is implemented in Xilinx Virtex4 XC4VLX60. The clock operates at 36.57 MHz normally. This circuit can support 2k-, 4k-, and 8k-point FFT.

    After implementation of the circuit, several enhancements are also proposed such as ICI cancelation and hardware sharing. These provide the direction to implement a more
    excellent DVB-T/H receiver in the future.

    1 Introduction 1.1 DVB-T/H Introduction 1.1.1 Introduction to DVB 1.1.2 Terrestrial Digital Television Broadcasting 1.1.3 Advantages of DVB-T/H 1.2 Motivation of the Thesis 1.3 Organization of the Thesis 2 System Description 2.1 DVB-T/H Physical Layer Specifications 2.1.1 Scrambler/descrambler, Coding, and Interleaving 2.1.2 Constellation and OFDM Transmission 2.1.3 System Summary 2.2 The Scope of Proposed Transceiver 2.3 Design Flow 3 System Architecture Design 3.1 Transmitter Architecture 3.1.1 Mapper 3.1.2 Frame Adapter 3.1.3 Inverse Fast Fourier Transform and Guard Interval Insertion 3.2 Receiver Architecture 3.2.1 Mode Detection 3.2.2 Signal Detection/ Symbol Synchronization 3.2.3 Fractional Carrier Frequency Offset Estimation and Compensation 3.2.4 Fast Fourier Transform 3.2.5 Integer Carrier Frequency Offset Compensation/ First Scattered Pilot Search 3.2.6 Channel Response Estimation 3.2.7 Channel Frequency Response Compensation 3.2.8 Window Controller 3.2.9 De-Constellation 4 System Simulation 4.1 Channel Impairments 4.1.1 Multi-path Channel Model 4.1.2 Mobile Channel Model 4.1.3 Additive White Gaussian Noise 4.1.4 Carrier Frequency Offset 4.1.5 Sampling Frequency Offset 4.2 Simulation Result 4.2.1 The Performance for the Multi-path Channel 4.2.2 Mobile Channel 4.2.3 CFO 4.2.4 SFO 4.2.5 SFO and CFO in P1 Channel 4.2.6 SFO and CFO in Mobile TU6 Channel 4.3 Word Length Decision of Blocks’ Output 4.3.1 Output of ADC 4.3.2 Output of CFO Compensation 4.3.3 Output of FFT 4.3.4 Output of Channel Estimation 4.3.5 Output of Channel Compensation (Frequency Domain Equalization) 4.3.6 Fixed-Point Model Performance 5 Circuit Design 5.1 Block Partition 5.2 Mode Detection, Signal Detection, and Boundary detection 5.2.1 Multiplication 5.2.2 Absolute value 5.2.3 Angle Acquisition 5.3 Fast Fourier Transform 5.4 Equalization in Frequency Domain 5.4.1 Integer CFO Acquisition and Location Acquisition of First Scattered Pilot 5.4.2 Channel Estimation 5.4.3 Interpolation 5.4.4 De-mapper 5.5 Summary 6 Implementation and Measurement Results 6.1 Hardware Performance Analysis 6.1.1 Signal Detection 6.1.2 FFT 6.2 Introduction of Development Environment 6.2.1 Specification of FPGA System Board 6.2.2 Pattern Generator and Logic Analyzer 6.2.3 Xilinx ISE 6.2.4 I/O Connections 6.3 Gate Count Analysis 6.4 Implementation Result 7 Discussions and Conclusions 7.1 Comparisons and Analysis 7.1.1 Doppler Algorithm Comparison 7.1.2 FFT comparison 7.2 Future Works 7.3 Conclusions

    [1] ETSI EN 300 744 v1.5.1, Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television, November 2004.

    [2] ETSI EN 101 190 v1.2.1, Digital Video Broadcasting (DVB); Implementation guidelines for DVB terrestrial services; Transmission aspects, Novmember 2004.

    [3] ETSI EN 302 304 v1.1.1, Digital Video Broadcasting (DVB); Transmission System for Handheld Terminals (DVB-H), Novmember 2004.

    [4] ETSI EN 302 304 v1.1.1, Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for 11/12 GHz satellite services, Novmember 2004.

    [5] ETSI EN 302 304 v1.1.1, Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for cable systems, Novmember 2004.

    [6] ATSC A/53D, ATSC Standard: Digital Television Standard (A/53), revision D, including amendment no. 1, July 27, 2005.

    [7] ARIB STD-B31 v1.5, Transmission System for Digital Terrestrial Television Broadcasting, July 29, 2003.

    [8] Frieder Sanzi and Joachim Speidel, ”An adaptive two-dimensional channel estimator for wireless OFDM with application to mobile DVB-T,” IEEE Transactions on Broadcasting, vol. 46, no. 2, pp. 128-133, June 2000.

    [9] Ting-An Lin and Chen-Yi Lee, “Predictive equalizer design for DVB-T system,”
    in Proc. IEEE International Symposium on Circuit and Systems, 2005, vol. 2, pp.
    940-943.

    [10] Juha Heiskala and John Terry, OFDM Wireless LANs: A Theoretical and Practical Guide. Sames, Dec. 11, 2001.

    [11] van de Beek J. J., Edfors O., Sandell M., Wilson S. K., and Borjesson, P. O., “On channel estimation in OFDM systems ,” in Proc. IEEE 45th Vehicular Technology
    Conference, 1995, vol. 2, pp. 815-819.

    [12] Speth M., Fechtel S. A., Fock G., and Meyr H., “Optimum receiver design for wireless broad-band systems using OFDM—part I,” IEEE Transections on Communications, vol. 47, no. 11, pp. 1668-1677, Nov. 1999.

    [13] Speth M., Fechtel S.A., Fock G., and Meyr H., “Optimum receiver design for OFDM-based broadband transmission—part II: a case study,” IEEE Transections on Communications, vol. 49, no. 4, pp. 571-578, April 2001.

    [14] Shiou-Hong Chen, Way-Hong He, Hou-Shin Chen, and Yumin Lee, “Mode detection, synchronization, and channel estimation for DVB-T OFDM receiver,” in Proc. IEEE Global Telecommunications Conference, 2003, vol. 5, pp. 2416-2420.

    [15] Hou-Shin Chen and Yumin Lee, “Novel sampling clock offset estimation for DVB-T OFDM,” in Proc. IEEE 58th Vehicular Technology Conference, vol. 4, pp. 2272-2276.
    [16] Pei-Yun Tsai, Hsin-Yu Kang, and Tzi-Dar Chiueh, “Joint weighted least-squares
    estimation of carrier-frequency offset and timing offset for OFDM systems over multipath fading channels,” IEEE Transection on Vehicular Technology, vol. 54, no. 1, pp. 221-223, Jan. 2005.

    [17] Ryan and Thomas P., Modern Regression Methods. Wiley, Dec. 1996.

    [18] Diniz, da Silva, and Netto, Digital Signal Processing, 1st ed. New York: Cambridge University Press, 2002.

    [19] ETSI TS 100 910 v8.15.0 (3GPP TS 05.05 v8.15.0), Digital cellular telecommunications system (Phase 2+); Radio transmission and reception, April 2004.

    [20] Jung-Hee Suk, Dae-Won Kim, Taek-Won Kwon Suk-Kun Hyung, and Jun-rim Choi, “A 8192 complex point FFT/IFFT for COFDM modulation scheme in DVB-T
    system,” in Proc. IEEE International Systems-on-Chip Conference, Sept. 17-20, 2003, pp. 131-134.

    [21] Yu-Wei Lin, Hsuan-Yu Liu, and Chen-Yi Lee, “A dynamic scaling FFT processor for DVB-T applications,” IEEE Journal of Solid-State Circuits, vol. 39, no. 11, pp. 2005-2013, Nov. 2004

    [22] Chua-Chin Wang, Jian-Ming Huang, and Hsian-Chang Cheng, “A 2K/8K mode small-area FFT processor for OFDM,” IEEE Transactions on Consumer Electronics, vol. 51, no. 1, pp. 28-32, Feb. 2005.

    [23] Y. T. Lin, P. Y. Tsai, and T. D. Chiueh, “Low-power variable-length fast Fourier transform processor,” in Proc. IEE Computers and Digital Techniques, 2005, vol. 152, no. 4, pp. 499-506.

    [24] Wold E. H., Despain, and A. M., “Pipeline and parallel-pipeline FFT processors for VLSI implementations,” IEEE Transactions on Computers, vol C-33, no. 5, pp. 414-426, May 1984.

    [25] Sameer R. Herlekar, Khaled Z. Matarneh, Hsiao-Chun Wu, Yiyan Wu, and Xianbin Wang, “Performance evaluation of an ICI self-cancellation coded transceiver for mobile DVB-T applications,” IEEE Transactions on Consumer Electronics, vol. 51, no. 4, pp. 1110-1120, Nov. 2005.

    [26] I-Wei Lai and Tzi-Dar Chiueh, “One-dimensional interpolation based channel estimation for mobile DVB-H reception,” in Proc. IEEE International Symposium on Circuits and Systems, 2006, pp. 5207-5210.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE