簡易檢索 / 詳目顯示

研究生: 蔡登宏
Deng-Horng Tsai
論文名稱: 解耦合微型振動陀螺儀之設計與分析
Design and Analysis of Decoupled Vibratory Gyroscopes
指導教授: 方維倫
Weileun Fang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 145
中文關鍵詞: 陀螺儀正交誤差解耦合橫軸
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微機電系統(MEMS)技術開發之微型振動陀螺儀,因為具有超小尺寸、批次生產及整合機械結構與電路成為系統晶片(system on chip)等優勢,所以廣泛運用於汽車安全與導航系統、虛擬實境、無人飛機、自動化工業及醫療產業上;微型振動陀螺儀的操作原理是經由科氏力進行驅動件與感測件之間機械能的轉換,雖然利用的原理相同,但發展的型態卻是千變萬化,包含有環式(ring type)、音叉式(tuning fork type)及輪式(wheel type)等,隨著微機電加工製造技術不斷地進步,使得微型振動陀螺儀的機械性能不斷提升;雖然微型陀螺儀之機械性能取決於製程技術,但其機械解耦合的型態更與振動陀螺儀之性能息息相關,耦合情況愈嚴重,橫軸靈敏度(cross axis sensitivity)亦愈高;有鑑於此,本研究將進行完全解耦合z軸振動陀螺儀及兩種解耦合型態之同平面雙軸振動輪式陀螺儀的開發,期能滿足三軸角速率的量測,如再進一步整合三軸向加速儀,將可完成微型慣性量測單元(micro inertial measurement unit)的建構。


    According to their compact size, batch production, and the integration of the mechanical structures with the electronics into a system chip, MEMS-based vibratory microgyroscopes can be widely used in the vehicle safety and navigation, virtual reality, unmanned aerial vehicles, automation, and medical industry. The operational principle is mainly based on the transfer of mechanical energy between a vibrating element and a sensing element through the Coriolis acceleration. Although the principle is the same, the design of microgyroscopes varies, such as ring type, tuning fork type and wheel type etc. Since the micromachining fabrication processes are dramatically improved, the mechanical performance of vibrating microgyroscope is promoting continuously. Normally, the mechanical performance of gyroscopes depends on manufacturing process. However, the mechanical decoupling design is more vitally related with the performance of gyroscopes. The more serious mechanical coupling is, the higher cross axis sensitivity will become. Therefore, this research will present a decoupled z-axis microgyroscope and two decoupled dual-axis vibrating wheel microgyroscopes. Combining z-axis gyroscope with dual-axis wheel gyroscope, the measurement of 3-axis angular rates could be realized. Once the 3-axis accelerometers could be further integrated, the construction of the micro inertial measurement unit will be fulfilled.

    中文摘要 I Abstract II 誌謝 III 圖目錄 VI 表目錄 X 第一章、緒論 1 1-1 研究動機 1 1-2 操作原理 2 1-3 文獻回顧 3 1-3-1 結構耦合型態 3 1-3-2微型振動陀螺儀之分類與運作機制 5 1-3-3微型振動陀螺儀之加工技術 11 1-4研究目標 13 第二章、完全解耦合z軸微型振動陀螺儀之設計與分析 30 2-1解耦合z軸微型振動陀螺儀設計 30 2-2性能分析 32 2-2-1共振頻率推導與模態分析 32 2-2-2斜齒型梳狀電極頻率調變 34 2-2-3共振吸附電壓與最大可控衝程之計算 38 2-2-4穩定性分析 40 2-2-5靈敏度分析 41 2-2-6分析結果 42 2-3 小結 42 第三章、解耦合雙軸振動輪式陀螺儀之設計與分析 55 3-1新型態陀螺儀設計 55 3-1-1 基本操作原理 56 3-1-2 動力學模型 57 3-1-3 共振頻率設計 60 3-1-4 DC頻率調變 60 3-1-5 三樑式扭轉彈簧 61 3-1-6驅動電極設計 62 3-2性能分析 63 3-2-1 靈敏度分析 63 3-2-2 非線性度分析 65 3-3小結 66 第四章、完全解耦合雙軸振動輪式陀螺儀之設計與分析 80 4-1新型態陀螺儀設計 80 4-1-1 基本操作原理 80 4-1-2 動力學模型 82 4-1-3 共振頻率設計 86 4-2性能分析 87 4-2-1 靈敏度分析 88 4-2-2 非線性度分析 90 4-3 小結 91 第五章、解耦合微型振動陀螺儀製造與量測 103 5-1 解耦合z軸陀螺儀製程與結果 103 5-1-1製造程序 103 5-1-2製造結果 104 5-2解耦合雙軸輪式陀螺儀製程與結果 105 5-2-1製造程序 105 5-2-2製造結果 106 5-3量測與結果 107 5-3-1結構動態特性測試 107 5-3-2直流偏壓頻率調變測試 108 5-3-3陀螺儀感測軸向的振動器動態測試 109 5-3-4陀螺儀在旋轉平台上之性能測試 110 5-4 小結 111 第六章、總結與未來工作 134 6-1 研究成果 134 6-2 未來工作 136 第七章、參考文獻 137

    [1] N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined Inertial Sensors,” Proceeding of the IEEE, vol.86, pp.1640-1659,1998
    [2] R. Neul, U. Gomez, K. Kehr, W. Bauer, J. Classen, C. Doring, E. Esch, S. Gotz, J. Hauer, B. Kuhlmann, C. Lang, M. Veith, R. Willig, “Micromachined Gyros for Automotive Applications,” IEEE Sensors, pp.527-530,2005
    [3] N. Barbour and G. Schmidt, “Inertial Sensor Technology Trends,” IEEE Sensors Journal, vol.1, no. 4, pp.332-339,2001
    [4] W. Geiger, W.U. Butt, A. Gaißer, J. Frech, M. Braxmaier, T. Link, A. Kohne, P. Nommensen, H. Sandmaier, and W. Lang, “Decoupled Microgyros and the Design Principle DAVED,” Sensors and Actuators A 95(2002), pp. 239–249.
    [5] M. Palaniapan, R.T. Howe, and J. Yasaitis, “Performance Comparison of Integrated Z-Axis Frame Microgyroscopes,” Proceedings of the IEEE MEMS’03, Kyoto, Japan, January 2003, pp. 482–485.
    [6] M. W. Putty and K. Najafi, “A Micromachined Vibrating Ring Gyroscope,” In Tech. Dig. Solid-State Sensors and Actuators Workshop, Hilton head Island, SC, June 1994, pp. 213-220.
    [7] “Microstructure for Vibratory Gyroscope,” US Patent No. 5450751 (1995), General Motors Corporation.
    [8] Silicon Sensing System Ltd., “Performance and Design of a Silicon Micromachined Gyro,” Rate Sensor Application Note (2001).
    [9] C.C. Painter, A.M. Shkel, “Active Structural Error Suppression in MEMS Vibratory Rate Integrating Gyroscopes,” IEEE Sensors Journal, vol. 3, pp.595-606,2003
    [10] Jui-Hong Weng, Wei-Hua Chieng and Jenn-Min Lai, “Structural Design and Analysis of Micromachined Ring-Type Vibrating Sensor of Both Yaw Rate and Linear Acceleration,” Sensors and Actuators A 117(2005), pp.230–240.
    [11] “Rate Sensor,” US Patent No. 5915276 (1999), British Aerospace Public Limited Company, United Kingdom.
    [12] “Gyroscope,” US Patent No. 6343509 B1, 2002, BAE System PLC, Hants (GB).
    [13] B.J. Gallacher, J.S. Burdess, A.J. Harris, “Principles of a Three-Axis Vibrating Gyroscope,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, 2001, pp.1333-1343.
    [14] F. Ayazi and K. Najafi, “A HARPSS Polysilicon Vibrating Ring Gyroscope,” Journal of Microelectromechanical Systems, Vol. 10, 2001, pp. 169 –179.
    [15] W. Geiger, B. Folkmer, U. Sobe, H. Sandmaier, and W. Lang, “New Designs of Micromachined Vibrating Rate Gyroscopes with Decoupled Oscillation Modes,” Sensors and Actuators A 66(1998), pp.118–124.
    [16] K. Funk, H. Emmerich, A. Schilp, M. Offenberg, R. Neul, and F. Larmer, “A Surface Micromachined Silicon Using a Thick Polysilicon Layer,” Proceedings of the IEEE MEMS’99, Orlando, FL, January 1999, pp. 57–60.
    [17] S. An, Y.S. Oh, K.Y. Park, S.S. Lee, and C.M. Song, “Dual-Axis Microgyroscope with Closed-Loop Detection,” Sensors and Actuators A 73(1999), pp. 1–6.
    [18] T. Fujita, K. Maenaka, T. Mizuno, T. Matsuoka, T. Kojima, T. Oshima, and M. Maeda, “Disk-Shaped Bulk Micromachined Gyroscope with Vacuum Sealing,” Sensors and Actuators A 82(2000), pp. 198–204.
    [19] T. Juneau, A. P. Pisano, “Micromachined Dual Input Axis Angular Rate Sensor,” In Tech. Dig. Solid-State Sensors and Actuators Workshop, Hilton head Island, SC, June 1996, pp. 299-302
    [20] T. Fujita, K. Maenaka, and M. Maeda, “Design of Two-Dimensional Micromachined Gyroscope by Using Nickel Electroplating,” Sensors and Actuators A 66(1998), pp.173–177.
    [21] T. K. Tang, R. C. Gutierrez, C.B. Stell, V. Vorperian, G.A. Arakaki, J.T. Rice, W.J. Li, I. Chakraborty, K. Shcheglov, J.Z. Wilcox, and W.J. Kaiser, “A Packaged Silicon MEMS Vibratory Gyroscope for Microspacecraft,” Proceedings of the IEEE MEMS’97, Nagoya, Japan, January 1997, pp. 500–505.
    [22] T. Juneau, A. P. Pisano and J. H. Smith, “Dual Axis Operation of a Micromachined Rate Gyroscope,” Proceedings of the Transducers’97, Chicago, IL, June 1997, pp. 883-886.
    [23] “Multi-Element Micro Gyro,” US Patent No. 5955668, 1999, Irvine Sensors Corporation, Costa Mesa, Calif.
    [24] “Electrically Decoupled Micromachined Gyroscope,” WO 01/20259 A1, 2001, Kionix, Inc.
    [25] “Silicon Gyro with Integrated Driving and Sensing Structure,” US Patent No. 6374672 B1(2002), Litton System, Inc., Woodland Hills, CA (US).
    [26] S. Rajendran and K. M. Liew, “Design and Simulation of an Angular-Rate Vibrating Microgyroscope,” Sensors and Actuators A 116(2004), pp.241–256.
    [27] J. J. Blech, “On Isothermal Squeeze Films,” Journal of Lubrication Technology, Vol.105, pp.615-620,1983.
    [28] M. Andrews, I. Harris, and G. Turner, “A Comparison of Squeeze-Film Theory with Measurements on a Microstructure,” Sensors and Actuators A 36(1993), pp.79–87.
    [29] J. Bernstein, S. Cho, A. T. King, A. Kourepenis, P. Maciel, and M. Weinberg, “A Micromachined Comb-Drive Tuning Fork Rate Gyroscope,” MEMS'93, Fort Lauderdale, FL, Feb. 1993, pp.143-148.
    [30] “Tuning Fork Type Gyroscope,” US Patent No. 5780739 (1998), Samsung Electronics Co., Ltd.
    [31] “Microfabricated Tuning Fork Gyroscope and Associated Three-Axial Inertial Measurement System to Sense Out-of-Plane Rotation,” US Patent No. 6257059 B1 (2001), The Charles Stark Draper Laboratory, Inc., Cambridge, MA (US).
    [32] M. Abe, E. Shinohara, K. Hasegawa, S. Murata, and M. Esashi, “Trident-Type Tuning Fork Silicon Gyroscope by the Phase Difference Detection,” MEMS’ 2000, pp. 508 -513.
    [33] N. Hedenstierna, S. Habibi, S. M. Nilsen, and T. Kvisteroy, “Bulk Micromachined Angular Rate Sensor Based on the ‘Butterfly’-Gyro Structure,” MEMS’ 2001, pp. 178 -181.
    [34] S. Sassen, R. Voss, J. Schalk, E. Stenzel, T. Gleissner, R. Gruenberger, F. Neubauer, W. Ficker, W. Kupke, K. Bauer and M. Rose, “Tuning Fork Silicon Angular Rate Sensor with Enhanced Performance for Automotive Applications,” Sensors and Actuators A 83(2000), pp.80–84.
    [35] J. Albert Chiou, “Process Window of Micromachined Gyroscopes Subjected to Vibrational Frequencies,” Sensors and Actuators A 125(2006), pp.519–525.
    [36] M. Fujiyoshi, Y. Nonomura, Y. Omura, K. Tsukada, S. Matsushige, N. Kurata, “Modeling and Vibration Analysis of Quartz Yaw Rate Sensor to Reduce Mechanical Coupling,” Proceedings of 2001 International Symposium on Micromechatronics and Human Science, 2001, pp.105-108.
    [37] Saulius Kausinis and Rimantas Barauskas, “Computer Simulation of a Piezoelectric Angular Rate Sensor,” Measurement 39(2006), pp.947–958.
    [38] Bin Xiong, Lufeng Che and Yuelin Wang, “Detection Capacitance Analysis Method for Tuning Fork Micromachined Gyroscope Based on Elastic Body Model,” Sensors and Actuators A 128(2006), pp.52–59.
    [39] “Multi-Element Micro Gyro,” US Patent No. 6089089 (2000), Microsensors, Inc.,Costa Mesa, Calif.
    [40] “Micromachined Gyros,” US Patent No. 6122961 (2000), Analog Devices, Inc.
    [41] U.-M. Gomez, B. Kuhlmann, J. Classen, W. Bauer, C. Lang, M. Veith, E. Esch, J. Frey, F. Grabmaier, K. Offterdinger, T. Raab, H.-J. Faisst, R. Willig,; R. Neul, “New Surface Micromachined Angular Rate Sensor for Vehicle Stabilizing Systems in Automotive Applications,” Transducers’05, 2005, pp.184-187.
    [42] S.A. Bhave, J.I. Seeger, Jiang Xuesong, B.E. Boser, R.T. Howe, J. Yasaitis, “An Integrated, Vertical-Drive, In-Plane-Sense Microgyroscope,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, vol. 1, 2003, pp.171-174.
    [43] A.A. Seshia, R.T. Howe, S. Montague, “An Integrated Microelectromechanical Resonant Output Gyroscope,” The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, 2002, pp.722-726.
    [44] Y. Mochida, M. Tamura, and K. Ohwada, “A Micromachined Vibrating Rate Gyroscope with Independent Beams for the Drive and Detection Modes,” Sensors and Actuators A 80(2000), pp. 170–178.
    [45] H. T. Lim, J. W. Song, J. G. Lee, and Y. K. Kim, “A Few deg/hr Resolvable Low Noise Lateral Microgyroscope,” MEMS'02 , pp.627 –630.
    [46] Jongpal Kim, Sangjun Park, Donghun Kwak, Hyoungho Ko, William Carr, James Buss and Dong-il Dan Cho, “Robust SOI Process without Footing and its Application to Ultra High-Performance Microgyroscopes,” Sensors and Actuators A 114(2004), pp.236–243.
    [47] Jongpal Kim, Sangjun Park, Donghun Kwak, Hyouingho Ko, Cho, D.D, “An X-axis Single-Crystalline Silicon Microgyroscope Fabricated by the Extended SBM Process,” Journal of Microelectromechanical Systems 14(2005), pp.444–455.
    [48] Y. Nonomura, M. Fujiyoshi, Y. Omura, N. Fujitsuka, K. Mizuno and K. Tsukada, “SOI Rate Gyro Sensor for Automotive Control,” Sensors and Actuators A 132(2006), pp.42–46.
    [49] K. Maenaka and T. Shiozawa, “A Study of Silicon Angular Rate Sensors Using Anisotropic Etching Technology,” Sensors and Actuators A 43(1994), pp.72-77.
    [50] Jongwon Seok and Henry A. Scarton, “Dynamic Characteristics of a Beam Angular-Rate Sensor,” International Journal of Mechanical Sciences 48(2006), pp.11–20.
    [51] K. Maenaka, T. Fujita, Y. Konishi and M. Maeda, “Analysis of a Highly Sensitive Silicon Gyroscope with Cantilever Beam as Vibrating Mass,” Sensors and Actuators A 54(1996), pp.568–573.
    [52] Mehdi Esmaeili, Nader Jalili and Mohammad Durali, “Dynamic Modeling and Performance Evaluation of a Vibrating Beam Microgyroscope under General Support Motion,” Journal of Sound and Vibration 17(2006), In Press, Corrected Proof.
    [53] “Silicon Gyro with Integrated Driving and Sensing Structure,” US Patent No. 6374672 B1, 2002, Litton System, Inc., Woodland Hills, CA.
    [54] “Micromachined Vibratory Rate Gyroscope,” US Patent No. 6067858 (2000), The Regent of the University of California, Oakland, Calif.
    [55] Z. Li, Z. Yang, Z. Xiao, Y. Hao, T. Li, G Wu, and Y. Wang, “A Bulk Micromachined Vibratory Lateral Gyroscope Fabricated with Wafer Bonding and Deep Trench Etching,” Sensors and Actuators A 83(2000),pp.24-29.
    [56] Tao Jiang, Anlin Wang, Jiwei Jiao and Guangjun Liu, “A Novel Bulk Micromachined Gyroscope with Slots Structure Working at Atmosphere,” Sensors and Actuators A 107(2003), pp.137–145.
    [57] Y. Ansel, Ph. Lerch and Ph. Renaud, “Mode Coupling Aspects in a Vibrating Gyroscope,” Sensors and Actuators A 62(1997), pp.576–581.
    [58] Toshiyuki Tsuchiya, Yasuyuki Kageyama, Hirofumi Funabashi and Jiro Sakata, “Vibrating Gyroscope Consisting of Three Layers of Polysilicon Thin Films,” Sensors and Actuators A 82(2000), pp.114–119.
    [59] Kyu-Yeon Park, Chong-Won Lee, Yong-Su Oh and Young-Ho Cho, “Laterally Oscillated and Force-Balanced Micro Vibratory Rate Gyroscope Supported by Fish-Hook-Shaped Springs,” Sensors and Actuators A 64(1998), pp.69–76.
    [60] Xingguo Xiong, Deren Lu, Weiyuan Wang, “A Bulk-Micromachined Comb Vibratory Microgyroscope Design,” 48th Midwest Symposium on Circuits and Systems, 2005, pp.151–154.
    [61] F. Ayazi and K. Najafi, “Design and Fabrication of High-Performance Polysilicon Vibrating Ring Gyroscope,” in Proc. IEEE Micro Electro Mechanical Systems(MEMS) Workshop, Helidelberg, Germany, Feb. 1998, pp. 621 –626.
    [62] F. Ayazi and K. Najafi, “High Aspect-Ratio Polysilicon Micromachining Technology,” Sensors and Actuators A 87(2000), pp.46–51.
    [63] F. Ayazi, H H Chen, F. Kocer, G. He, and K. Najafi, “A High Aspect-Ratio Polysilicon Vibrating Ring Gyroscope,” Digest, Solid-State Sensor and Actuator Workshop, Hilton Head, SC, June 2000, pp. 289-292.
    [64] K. Najafi and He Guohong, “A Single-Crystal Silicon Vibrating Ring Gyroscope,” The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, 2002, Page(s): 718 –721.
    [65] “Method of Manufacturing a Vibrating Structure Gyroscope,” US Patent No. 6471883 B1(2002), BAE System PLC,Hants(GB).
    [66] Robert Bosch GmbH, “Micromachining Foundry Design Rules,” VERSION 2.0, 1 February 2000.
    [67] J.H. Smith, S. Montague, “Embedded Micromechanical Devices for the Monolithic Integration of MEMS with CMOS,” IEDM, Tech, Digest, pp.609- 612, 1995
    [68] Y. Gianchandani and K. Najafi, “A Bulk Silicon Dissolved Wafer Process for Microelectromechanical System,” J. Microelectromech. Syst., pp.77- 85, 1992
    [69] R. Voss, K. Bauer, W. Ficker, T. Gleissner, W. Kupke, “Silicon Angular Rate Sensor for Automotive Applications with Piezoelectric Drive and Piezoresistive Read-out,” In Tech. Dig. 9th Int. Conf. Solid-State Sensors and Actuators (Transducers’97), Chicago, IL,, June 1997, pp. 879-882
    [70] H. Xie, and G.K. Fedder, “A CMOS-MEMS Lateral-Axis Gyroscope,” The 14th IEEE International Conference on Micro Electro Mechanical Systems, 2001. pp.162-165.
    [71] H. Xie, L. Erdmann, X. Zhu, K. J. Gabriel and G.K. Fedder, “A Copper CMOS-MEMS Z-axis Gyroscope,” The 15th IEEE International Conference on Micro Electro Mechanical Systems, 2002. pp.631-634.
    [72] H. Xie and G.K. Fedder, “A DRIE CMOS-MEMS gyroscope,” Proceedings of IEEE Sensors, vol. 2, 2002. pp.1413-1418.
    [73] H. Xie and G.K. Fedder, “Fabrication, Characterization, and Analysis of a DRIE CMOS-MEMS Gyroscope,” IEEE Sensors Journal, vol. 3, pp.622-631,2003
    [74] S. E. Alper and T. Akin, “A Symmetric Surface Micromachined Gyroscope with Decoupled Oscillation Modes,” Transducers’01, Munich, Germany, June 2001,pp.456-459.
    [75] A. K. Rourke, S. Mc William and C. H. J. Fox, “Frequency Trimming of a Vibrating Ring-Based Multi-Axis Rate Sensor,” Journal of Sound and Vibration, vol. 280(2005), pp.495–530.
    [76] Ki Bang Lee and Young-Ho Cho, “A Triangular Electrostatic Comb Array for Micromechanical Resonant Frequency Tuning,” Sensors and Actuators A 70(1998), pp.112–117.
    [77] E. Boser, “Electronics for Micromachined Inertial Sensors,” Transducers’ 97, Chicago IL, June 1997, pp. 1169–1172.
    [78] J. I. Seeger and B. E. Boser, “Parallel-Plate Driven Oscillations and Resonant Pull-in,” Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, SC, June 2002, pp. 313-316.
    [79] “Rotation Rate Sensor with Uncoupled Mutually Perpendicular Primary and Secondary Oscillations,” US Patent No. 6349597 B1(2002), Hahn-Schickard-Gesellschaft fur angewandte Forschung E.V.
    [80] J. Yeh, “Electeostatic Model of an Asymmetric Combdrive,” J. MEMS, Vol. 9, No. 1, pp. 126-135, March, 2000
    [81] C. Acar and A.M. Shkel, “Nonresonant Micromachined Gyroscopes with Structural Mode-Decoupling,” IEEE Sensors Journal, vol. 3, 2003, pp.497-506.
    [82] C. Acar and A.M. Shkel, “An Approach for Increasing Drive-Mode Bandwidth of MEMS Vibratory Gyroscopes,” Journal of Microelectromechanical Systems, 2004, pp.1-19.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE