簡易檢索 / 詳目顯示

研究生: 朱新爵
論文名稱: 以二氧化鋯作為閘極介電層實現氧化錫薄膜電晶體之研究
Study of SnO-Based N-Type Thin Film Transistor Using ZrO2 as the Gate Dielectric
指導教授: 巫勇賢
口試委員: 高瑄苓
鄭淳護
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 51
中文關鍵詞: 薄膜電晶體氧化錫
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著各種新型氧化物半導體的研究發明,應用在薄膜電晶體的主動通道層,平板顯示器等相關產品在社會上逐漸普及,形成巨大的商業市場,為了減少製程上的成本又同時保持優異的電性表現,開發合適的二元氧化物半導體是不曾停歇的。SnO2是一種極具吸引力的氧化物半導體,在金屬鋅、銦及錫之中,其擁有研究中最高的本質遷移率及能帶間隙,然而,傳統的未摻雜SnO2薄膜電晶體具有高操作電壓、高次臨界擺幅以及低載子遷移率特性,會限制高速以及高解析度的顯示器發展,因此,本論文提出一種方式來提升元件特性,我們使用SnO混合少量SnO2氧化物半導體薄膜當作元件的通道層,成功實現N型上閘極結構的薄膜電晶體,並使用高介電係數材料ZrO2作為元件的閘極介電層,此薄膜電晶體在400度的退火條件下,因為高閘極電容密度及低的介面缺陷密度,元件具有相當陡峭的次臨界擺幅,此外,元件同時擁有較高的載子遷移率及不錯的開關電流比。
    綜合以上的結果,我們認為此未摻雜的二元氧化物半導體具有相當大的潛力成為低成本及值得量產的薄膜電晶體技術之一。


    第一章序論 1 1-1 薄膜電晶體發展歷史 1 1-2 金屬氧化物半導體的優勢 2 1-3 高介電常數材料 3 1-4 研究動機 6 第二章文獻回顧 11 2-1 氧化錫(SnO)薄膜基本特性 11 2-2 二氧化錫(SnO2)薄膜基本特性 11 2-3 SnO在薄膜電晶體之應用 13 2-4 Top-gated結構與Bottom-gated結構比較 13 2-5 ZrO2介電層在薄膜電晶體之應用 14 第三章 實驗規劃及製作 24 主題 以SnO為通道層並使用ZrO2作為介電層之薄膜電晶體 24 3-1 TaN/ZrO2/SnO2/Insulator/Si TFT元件之製作 24 第四章 實驗結果與討論 29 4-1 XRD 結晶繞射分析 29 4-2 XPS 化學成分分析 30 4-3 電容及介面缺陷密度分析 30 4-4 IDS-Vg 曲線的特性探討 31 4-5 IDS-VDS 及Ig-Vg曲線的特性探討 33 4-6 遷移率(Mobility)的萃取 34 4-7 可靠度分析-PBTI 35 第五章 結論與未來展望 43 參考文獻 44

    [1.1] K. Mistry, M. Armstrong, C. Auth, S. Cea, T. Coan, T. Ghani, T. Hoffman, A. Murthy, J.
    Sandford, R. Shaheed, K. Zawadzki, K. Zhang, S. Thompson, and M. Bohr, “Delaying
    forever:uniaxial strained silicon transistors in a 90 nm CMOS technology,” in VLSI
    Symp. Tech. Dig., 2004, p. 50
    [1.2] J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors”, Rep.Prog. Phys., vol. 69, 2006, p. 327
    [1.3] K. Nomura, H. Ohta, A. Takagi, Toshio Kamiya, Masahiro Hirano, and Hideo Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, 2004, pp. 488–492
    [1.4] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett., vol. 89, no. 11, 2006, pp. 112123-1–112123-3
    [1.5] P. Görn, P. Hölzer, T. Riedl, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, and S. Kipp, “Stability of transparent zinc tin oxide transistors under bias stress,” Appl. Phys. Lett., vol. 90, no. 6, 2007, pp. 063502-1– 063502-3
    [1.6] M. K. Ryu, S. Yang, S.H.K. Park, C. S. Hwang, and J. K. Jeong, “High performance thin film transistor with cosputtered amorphous Zn–In–Sn–O channel: combinatorial approach,” Appl. Phys. Lett., vol. 95, no. 7, 2009, pp. 072104-1–072104-3
    [1.7] B. S. Yang, M. S. Huh, S. Oh, U. S. Lee, Y. J. Kim, M. S. Oh, J. K. Jeong, C. S. Hwang, and H. J. Kim, “Role of ZrO2 incorporation in the suppression of negative bias illumination-induced instability in Zn–Sn–O thin film transistors,” Appl. Phys. Lett., vol. 98, no. 12, 2011, pp. 122110-1–122110-3
    [1.8] E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Gonçalves, A. J. S. Marques, R. F. P. Martins, and L. M. N. Pereira, “Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature,” Appl. Phys. Lett., vol. 85, no. 13, 2004, pp. 2541-2543
    [1.9] S. H. K. Park, C. S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J. I. Lee, K. Lee, M. S. Oh, and S. Im, “Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light- emitting-diode display panel,” Adv. Mater., vol. 21, no. 6, 2009, pp. 678–682
    [1.10] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” J. Appl. Phys., vol. 93, no. 3, 2003, pp. 1624–1630
    [1.11] J. W. Park, D. Lee, H. Kwon, S. Yoo, and J. Huh, “Performance improvement of n-Type TiOx active-channel TFTs grown by low-temperature plasma-enhanced ALD,” IEEE Electron.Device Lett., vol. 30, no. 7, 2009, pp. 739–741
    [1.12] K. H. Choi, and H. K. Kim, “Fabrication of transparent TiO2-x channel-based thin film transistors using an oxygen-deficient TiO2-x target,” Electrochem. Solid -State Lett., vol. 14, no. 8, 2011, pp. H314–H317
    [1.13] G. Oike, T. Yajima, T. Nishimura, and K. Nagashio, “High electron mobility (>16 cm2/Vsec) FETs with high on/off ratio (>106) and highly conductive films (σ>102 S/cm) by chemical doping in very thin (~20 nm) TiO2 films on thermally grown SiO2,” in Proc. IEEE IEDM, 2013, pp. 11.5.1–11.5.4
    [1.14] K. Ellmer, “Resistivity of polycrystalline zinc oxide films: current status and physical limit,” J. Phys. D: Appl. Phys., vol. 34, 2001, pp. 3097–3108
    [1.15] J. Sun, A. Lu, L. Wang, Y. Hu, and Q. Wan, “High-mobility transparent thin-film transistors with an Sb-doped SnO2 nanocrystal channel fabricated at room temperature,” Nanotechnology, vol. 20, 2009, p. 335204
    [1.16] E. N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, and W. Lu, “Fully transparent thin-film transistor devices based on SnO2 nanowires,” Nano. Lett., vol. 7, No. 8, 2007, pp. 2463–2469
    [1.17] S. Y. Shin, Y. K. Moon, W. S. Kim, S. H. Lee, and J. W. Park, “Characterization of the SnO2 based thin film transistors with Ga, In and Hf doping,” J. Nanosci. Nanotechnol, vol. 12, 2012, pp.5459–5463
    [1.18] R. E. Presley, C. L. Munsee, C. H. Park, D. Hong, J. F. Wager, and D. A. Keszler, “Tin oxide transparent thin-film transistors,” J. Phys. D: Appl. Phys., vol. 37, 2004, pp. 2810-2813
    [1.19] J. Zhai, X. Zhang, F. Hai, X. Yu, R. Zhu, and W. Zhang, “Fabrication and characterization of thin-film transistors with SnO2 channel by spray pyrolysis,” Jpn. J. Appl. Phys., vol. 53, 2014, pp. 066506-1–066506-3
    [1.20] L. Y. Liang, H. T. Cao, X. B. Chen, Z. M. Liu, F. Zhuge, H. Luo, J. Li, Y. C. Lu, and W. Lu, “Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities,” J. Appl. Phys., vol. 100, no. 26, 2012, pp. 263502-1–263502-5

    第二章

    [2.1] J. Z. Wang, R. Martins, N. P. Barradas, E. Alves, T. Monteiro, M. Peres, E. Elamurugu, and E. Fortunato, “Intrinsic p type ZnO films deposited by rf magnetron sputtering,” J. Nanosci. Nanotechnol., vol. 9, 2009, p. 813
    [2.2] H. Shimotani, H. Suzuki, K. Ueno, M. Kawasaki, and Y. Iwasa, “P-type field-effect transistor of NiO with electric double-layer gating,” Appl.Phys. Lett., vol. 92, 2008, p. 242107
    [2.3] S. Takami, R. Hayakawa, Y. Wakayama, and T. Chikyow, “Continuous hydrothermal synthesis of nickel oxide nanoplates and their use as nanoinks for p-type channel material in a bottom-gate field-effect transistor,” Nanotechnology, vol. 21, no. 13, 2010, p. 134009
    [2.4] L. Y. Liang, Z. M. Liu, H. T. Cao, and X. Q. Pan, “Microstructural, optical, and electrical properties of SnO thin films prepared on quartz via a two-step method,” Acs Applied Materials & Interfaces, vol. 2, 2010, p. 1060
    [2.5] M. Egashira, T. Matsumoto, and Y. Shimizu, “Highly ordered SnO2 nanorod arraysfrom controlled aqueous growth,” Sensors and Actuators B, vol. 14, 1988, p. 205
    [2.6] E. Leja, J. Korecki, K. Krop, and K. Toll, “Phase composition of SnOx thin films obtained by reactive d.c. sputtering,” Thin Solid Films, vol. 59, 1979, p. 147
    [2.7] E. Leja, T. Pisarkiewicz, and A. Kolodziej, “Electrical properties of non-stoichiometric tin oxide films obtained by the d.c. reactive sputtering method,” Thin Solid Films, vol. 67, 1980, p. 45
    [2.8] Linus Pauling, “The Nature of the Chemical Band”, 1989, P. 514
    [2.9] L. Y. Liang, H. T. Cao, X. B. Chen, Z. M. Liu, F. Zhuge, H. Luo, J. Li, Y. C. Lu, and W. Lu, “Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities,” J. Appl. Phys., vol. 100, no. 26, 2012, pp. 263502-1–263502-5
    [2.10] H. H. Hsieh, and C. C. Wu, “Amorphous ZnO transparent thin-film transistors fabricated by fully lithographic and etching processes,” J. Appl. Phys., vol. 91, p. 013502,2007.
    [2.11] J. S. Lee, S. Chang, S. M. Koo, and S. Y. Lee, “High-performance a-IGZO TFT with ZrO2 gate dielectric fabricated at room temperature,” IEEE Electron.Device Lett., vol. 31, no. 3, p. 225, 2010.
    [2.12]R. Mahapatra, J.-H. Lee, S. Maikap, G. S. Kar, A. Dhar, N.-M. Hwang, D.-Y. Kim, B. K. Mathur, and S. K. Ray, “Electrical and interfacial characteristics of ultrathin ZrO2 gate dielectrics on strain compensated SiGeC/Si heterostructure,” Appl. Phys. Lett., vol. 82, no. 14, pp. 2320–2322,Apr. 2003.
    [2.13] D. Fischer, and A. Kersch, “The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles,” Appl. Phys. Lett., vol. 92, no. 1, 2008,pp. 012908-1–012908-3
    [2.14] D. C. Hsu, M. T. Wang, and J. Y. Lee, “Electrical characteristics and reliability properties of metal–oxide semiconductor field-effect transistors with ZrO2 gate dielectric,” J. Appl. Phys., vol. 101, no. 9, 2007,pp. 094105-1–094105-4

    第四章

    [4.1] L. Y. Liang, H. T. Cao, X. B. Chen, Z. M. Liu, F. Zhuge, H. Luo, J. Li, Y. C. Lu, and W. Lu, “Ambipolar inverters using SnO thin-film transistors with balanced electron and hole mobilities,” J. Appl. Phys., vol. 100, no. 26, 2012, pp. 263502-1–263502-5
    [4.2] C. W. Ou, Dhananjay, Z. Y. Ho, Y. C. Chuang, S. S.Cheng, M. C. Wu, K. C. Ho, and C. W. Chu, “Anomalous p-channel amorphous oxide transistors based on tin oxide and their complementary circuits,” J. Appl. Phys., vol. 92, no. 12, 2008, pp. 122113-1–122113-3
    [4.3] R. E. Presley, C. L. Munsee, C. H. Park, D. Hong, J. F. Wager, and D. A. Keszler, “Tin oxide transparent thin-film transistors,” J. Phys. D: Appl. Phys., vol. 37, 2004, pp. 2810-2813
    [4.4] J. Zhai, X. Zhang, F. Hai, X. Yu, R. Zhu, and W. Zhang, “Fabrication and characterization of thin-film transistors with SnO2 channel by spray pyrolysis,” Jpn. J. Appl. Phys., vol. 53, 2014, pp. 066506-1–066506-3
    [4.5] S. H. K. Park, C. S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J. I. Lee, K. Lee, M. S. Oh, and S. Im, “Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light- emitting-diode display panel,” Adv. Mater., vol. 21, no. 6, 2009, pp. 678–682
    [4.6] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” J. Appl. Phys., vol. 93, no. 3, 2003, pp. 1624–1630
    [4.7] J. W. Park, D. Lee, H. Kwon, S. Yoo, and J. Huh, “Performance improvement of n-Type TiOx active-channel TFTs grown by low-temperature plasma-enhanced ALD,” IEEE Electron.Device Lett., vol. 30, no. 7, 2009, pp. 739–741
    [4.8] K. H. Choi, and H. K. Kim, “Fabrication of transparent TiO2-x channel-based thin film transistors using an oxygen-deficient TiO2-x target,” Electrochem. Solid -State Lett., vol. 14, no. 8, 2011, pp. H314–H317
    [4.9] P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, “ ZnO thin film transistors for flexible electronics,” Appl. Phys. Lett., vol. 82, 2003, p. 1117
    [4.10] R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett., vol. 82, 2003, p. 733
    [4.11] D. H. Levy, D. Freeman, S. F. Nelson, P. J. C. Corvan, and L. M. Irving, “Stable ZnO thin film transistors by fast open air atomic layer deposition,” Appl. Phys. Lett. vol., 92, 2008, p. 192101
    [4.12] E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Goncalves, A. J. S. Marques, R. F. P. Martins, and L. M. N. Pereira, “Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature,” Appl. Phys. Lett., vol. 85, 2004, p. 2541
    [4.13] G. Lavareda, C. N. de Carvalho, E. Fortunato, A. R. Ramos, E. Alves, O. Conde, and A. Amaral, “Transparent thin film transistors based on indium oxide semiconductor,” J. Non-Cryst. Solids, vol. 352, 2006, p. 2311
    [4.14] Y. Vygranenko, K. Wang, and A. Nathan, “Stable indium oxide thin-film transistors with fast threshold voltage recovery,” Appl. Phys. Lett., vol. 91, 2007, p. 263508
    [4.15] S. S. Dhanajay, C. Y. Cheng, C. W. Yang, Y. C. Ou, M. C. Chuang, C. W. Wu, and J. Chu, “Dependence of channel thickness on the performance of In2O3 thin film transistors,” Phys. D. Appl. Phys. vol. 41, 2008, p. 092006
    [4.16] M. Katayama, S. Ikesaka, J. Kuwano, Y. Yamamoto, H. Koinuma, and Y. Matsumoto, “Field-effect transistor based on atomically flat rutile TiO2,” Appl. Phys. Lett., vol. 89, 2006, p. 242103

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE