簡易檢索 / 詳目顯示

研究生: 張育誠
Chang, Yu-Cheng
論文名稱: 適用於3GPP-LTE之可變動區塊大小高速渦輪解碼器
High-Throughput Variable-Block-Size Turbo Decoder for 3GPP-LTE
指導教授: 黃元豪
Huang, Yuan-Hao
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 74
中文關鍵詞: 渦輪碼可變動區塊大小最大事後機率無記憶體衝突高傳輸速率
外文關鍵詞: 3GPP-LTE, Turbo code, contention-free, high throughput, variable block size
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在下一代通訊系統中,隨著人們對於快速以及高品質資料傳輸的要求與日俱增,高速渦輪解碼器的設計成為一個非常重要的研究領域。在本論文中,我們設計了一個適用於3GPP-LTE可變動區塊大小的高速渦輪解碼器。針對解碼速度方面,我們採用了平行區塊處理技術與radix-16最大事後機率演算法來提升平行度。此外,字元長度縮減化(word length shortening)的技術也被用來降低運算複雜度,此技術將同時改善面積以及電路延遲。另一方面,我們也設計出指令式交互連接器來提升對於不同區塊大小的支援性。同時針對於高平行度所面臨到的記憶體衝突問題,我們也提出無衝突導向的記憶體重置演算法來產生適當的指令組合以搭配交互連結器的運作。透過此重置演算法,所設計出來的渦輪解碼器將可在平行度高於 16 的情況下運行。最後,我們將所設計的radix-16 MAP處理器利用90nm UMC COMS製程與Faraday cell library以單晶片的方式實現;而渦輪解碼器則是搭配上一組 radix-16 MAP處理器並實現在FPGA模組上。透過完整的驗證流程後,所設計的MAP處理器將達到571Mb/s 的傳輸速率,而使用相同製程所合成的渦輪解碼器將在8次迭代的環境下達到35.24Mb/s的傳輸速率,其能量效能為 0.14nJ/b/iter。


    Since the next-generation wireless communication systems target to achieve high data rate and high transmission reliability, research on design and implementation of the channel codec becomes a challenging issue. The Turbo code is one of the most popular channel coding schemes for digital communication systems.

    In this thesis, a high-throughput Turbo decoder for 3GPP-LTE system is proposed. Both the parallel sub-block processing and radix-16 modified Log-MAP algorithm are used to minimize the performance loss, and the word length shortening technique is proposed to reduce the complexity. Besides, the supportability of variable block size is also accomplished by the proposed instruction-based interconnection circuits with instruction ROM. The instructions are pre-processed by the proposed contention-free oriented memory remapping algorithm. Related to the parallelism degree, the proposed remapping algorithm enables the contention-free feasibility with parallelism degree larger than 16, which is larger than that of the QPP interleaver in 3GPP-LTE Turbo decoding.

    The radix-16 reduced complexity MAP processor is designed and implemented as a single chip, and the proposed variable-block-size Turbo decoder with one raidx-16 MAP processor is realized as a prototype on FPGA module. The well-verified chip using 90nm UMC CMOS technology and Faraday cell library can achieve 571 Mb/s data rate with 392k gate counts. Moreover, the Turbo decoder is also synthesized with the same design kit. It has the throughput of 35.24Mb/s with 8 iterations, and the energy efficiency of this decoder is 0.14 nJ/b/iter.

    1. Introduction 1.1 Research Motivation 1.2 Thesis Organization 2. Turbo Code for 3GPP-LTE 2.1 Turbo Encoding 2.1.1 Recursive Systematic Convolutional Encoder 2.1.2 Turbo Interleaver 2.2 Turbo Decoding 2.2.1 Maximum A-Posteriori Algorithm 2.2.2 Max-Log-MAP Algorithm 2.2.3 Modified Log-MAP Algorithm 2.3 Sliding Window Approach 3. Methodologies for High Throughput Turbo Decoding 3.1 Sub-block Parallel Processing 3.2 Radix-16 Modified Log-MAP Algorithm 3.3 Word Length Shortening 3.4 Contention-Free Technologies 3.4.1 Memory Contention 3.4.2 QPP interleaver and Parallelism 3.4.3 Contention-Free Oriented Memory Remaping 3.4.4 Search Order Enhancement 4. Proposed Turbo Decoder for 3GPP-LTE 4.1 Architecture Overview 4.2 MAP Decoder 4.2.1 Decoding Schedule 4.2.2 Low-Latency ACS Circuits 4.3 Turbo Decoder 4.3.1 Reconfigurability for Variable Block Sizes 4.3.1 Instruction-based Interconnection Circuits 4.4 Design Parameter Analysis 4.4.1 Architecture Parameters 4.4.2 Consideration for Throughput 5. Implementation Results 5.1 Pre-synthesis Verification 5.2 FPGA Verification 5.3 Chip Characteristic 5.4 Comparison 6. Conclusion

    [1] C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon limit error-correcting coding and decoding: Turbo-codes," in Communications, 1993. ICC 93. Geneva. Technical Program, Conference Record, IEEE International Conference on, vol. 2, May 1993, pp. 1064-1070 vol.2.
    [2] A. Viterbi, "An intuitive justification and a simplied implementation of the MAP decoder for convolutional codes," Selected Areas in Communications, IEEE Journal on, vol. 16, no. 2, pp. 260-264, Feb 1998.
    [3] J. Sun and O. Takeshita, "Interleavers for turbo codes using permutation polynomials over integer rings," Information Theory, IEEE Transactions on, vol. 51, no. 1, pp. 101-119, Jan. 2005.
    [4] Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding, 3rd Generation Partnership Project (3GPP) TS 36.212, Rev. 9.0, Dec. 2009.
    [5] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal decoding of linear codes for minimizing symbol error rate," Information Theory, IEEE Transactions on, vol. 20, no. 2, pp. 284-287, Mar 1974.
    [6] J. Erfanian, S. Pasupathy, and G. Gulak, "Reduced complexity symbol detectors with parallel structure for ISI channels," Communications, IEEE Transactions on, vol. 42, no. 234, pp. 1661-1671, Feb/Mar/Apr 1994.
    [7] C. Y. Lin, "High Radix Turbo Decoder for 3GPP," Master's thesis, Department of Electrical Engineering, Nation Tsing Hua University, Hsinchu, Taiwan, 2009.
    [8] S.-J. Lee, N. Shanbhag, and A. Singer, "Area-efficient high-throughput MAP decoder architectures," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 13, no. 8, pp. 921-933, Aug. 2005.
    [9] Z. Wang, "High-Speed Recursion Architectures for MAP-Based Turbo Decoders," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 15, no. 4, pp. 470-474, April 2007.
    [10] L. Dinoi and S. Benedetto, "Variable-size interleaver design for parallel turbo decoder architectures," Communications, IEEE Transactions on, vol. 53, no. 11, pp.1833-1840, Nov. 2005.
    [11] Y. Zhang and K. Parhi, "Parallel turbo decoding," in Circuits and Systems, 2004. ISCAS'04. Proceedings of the 2004 International Symposium on, vol. 2, May 2004, pp. II-509-12 Vol.2.
    [12] Y.-X. Zheng and Y. Su, "Iterative decoding algorithm and terminating criteria for inter-block permuted turbo codes," in Personal, Indoor and Mobile Radio Communications, 2004. PIMRC 2004. 15th IEEE International Symposium on, vol. 2, Sept. 2004, pp. 1116-1120 Vol.2.
    [13] J. Ryu and O. Takeshita, "On quadratic inverses for quadratic permutation polynomials over integer rings," Information Theory, IEEE Transactions on, vol. 52, no. 3, pp. 1254-1260, March 2006.
    [14] C. Shung, P. Siegel, G. Ungerboeck, and H. Thapar, "VLSI architectures for metric normalization in the Viterbi algorithm," in Communications, 1990. ICC'90, Including Supercomm Technical Sessions. SUPERCOMM/ICC'90. Conference Record., IEEE International Conference on, Apr 1990, pp. 1723-1728 vol.4.
    [15] (2009) SMIMS Technology Corp. [Online]. Available: http://www.smims.com
    [16] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, "A 24Mb/s radix-4 logMAP turbo decoder for 3GPP-HSDPA mobile wireless," in Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International, 2003, pp. 150-484 vol.1.
    [17] S.-J. Lee, N. Shanbhag, and A. Singer, "A 285-mhz pipelined MAP decoder in 0.18-um cmos," Solid-State Circuits, IEEE Journal of, vol. 40, no. 8, pp. 1718-1725, Aug. 2005.
    [18] T. Vogt and N. Wehn, "A Reconfigurable Application Specific Instruction Set Processor for Convolutional and Turbo Decoding in a SDR Environment," in Design, Automation and Test in Europe, 2008. DATE'08, March 2008, pp. 38-43.
    [19] C.-H. Tang, C.-C. Wong, C.-L. Chen, C.-C. Lin, and H.-C. Chang, "A 952MS/s Max-Log MAP Decoder Chip using Radix-4x4 ACS Architecture," in Solid-State Circuits Conference, 2006. ASSCC 2006. IEEE Asian, Nov. 2006, pp. 79-82.
    [20] C.-C. Wong, Y.-Y. Lee, and H.-C. Chang, "A 188-size 2.1mm^2 reconfigurable turbo decoder chip with parallel architecture for 3GPP LTE system," in VLSI Circuits, 2009 Symposium on, June 2009, pp. 288-289.
    [21] B. Bougard, A. Giulietti, V. Derudder, J.-W. Weijers, S. Dupont, L. Hollevoet, F. Catthoor, L. Van der Perre, H. De Man, and R. Lauwereins, "A scalable 8.7nJ/bit 75.6Mb/s parallel concatenated convolutional (turbo-) CODEC," in Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International, 2003, pp. 152-484 vol.1.
    [22] G. Prescher, T. Gemmeke, and T. Noll, "A parameterizable low-power high-throughput turbo-decoder," in Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP'05). IEEE International Conference on, vol. 5, March 2005, pp. v/25-v/28 Vol. 5.
    [23] C. Benkeser, A. Burg, T. Cupaiuolo, and Q. Huang, "A 58mw 1.2mm^2 HSDPA Turbo Decoder ASIC in 0.13um CMOS," in Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, Feb. 2008, pp. 264-612.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE