簡易檢索 / 詳目顯示

研究生: 林政毅
Lin, Cheng-Yi
論文名稱: 修飾之氮化銦離子感測場效電晶體對DNA雜合反應偵測
Functionalized InN Ion Sensitive Field Effect Transistor for DNA Hybridization Detection
指導教授: 葉哲良
Yeh, J. Andrew
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 英文
論文頁數: 93
中文關鍵詞: 氮化銦離子感測場效應電晶體DNA 雜合反應分子氣相沉積3-硫醇基矽丙烷生物分子感測器
外文關鍵詞: InN ISFET, DNA Hybridization, Molecular Vapor Deposition (MVD), 3-mercaptopropyltrimethoxysilane (MPTMS), Biosensors
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超薄膜 (~10 nm) 氮化銦 (InN) 離子感測場效應電晶體 (ISFET),經分子氣相沉積(Molecular vapor deposition, MVD)技術,將 3-硫醇基矽丙烷 (3-Mercaptopropyltrimethoxysilane, MPTMS)以氣相法修飾在其閘極表面,以進行DNA雜和反應的偵測。超薄膜氮化銦離子感測場效應電晶體對於溶液中的陰離子,具有相當高的靈敏度與快速的反應時間,在化學與生物分子感測上展現出極大的應用可能。本研究以氣相沉積技術來矽烷化 (Silanization) 3-硫醇基矽丙烷,比起傳統的液相自組裝膜 (Self-assembled monolayer, SAM),此技術能大大地縮短表面修飾的時間。藉水的接觸角驗證,首先在氧離子的電漿清潔後,氮化銦表面呈現0o角,而經1.5個小時的氣相 3-硫醇基矽丙烷修飾後,氮化銦表面可達68o。3-硫醇基矽丙烷的分子尾端具有硫醇 (-SH) 官能基,能用來固化在5端經丙烯酰胺 (Acrylic phosphoramidite) 修飾的DNA探針 (Probe DNA)。將表面覆有3-硫醇基矽丙烷的氮化銦離子感測場效應電晶體浸置到10 uM 的DNA探針溶液中持續12個小時後,修飾完成的氮化銦離子感測場效應電晶體便能與互補的單股DNA (5'-ATTGTTATTAGG-3') 進行雜合反應。我們觀察到當互補對DNA溶液滴入閘極表面時,氮化銦離子感測場效應電晶體的源汲極電流有明顯約6 uA的電流下降。此電流下降的原因可歸因為溶液中帶負電的互補DNA雜合黏附到閘極表面所引起。對於12個鹼基的寡聚核苷酸探針 (Oligonucleotide probe),本研究已成功地偵測到 1 nM 的互補段目標 (Target) DNA,然而對帶有一個鹼基不匹配的非互補DNA,則偵測不到任何明顯的電流變化。


    Ultrathin (~10 nm) InN ion sensitive field effect transistors (ISFETs) with gate region modified with 3-mercaptopropyltrimethoxysilane (MPTMS) by molecular vapor deposition (MVD) are used to detect hybridization of deoxyribonucleic acid (DNA). The ultrathin InN ISFETs have a high sensitivity and short response time for anion detection, showing a great potential for chemical and biological sensing applications. Vapor-phase silanization of MPTMS using MVD substantially shortens the response time for surface modification compared to the conventional self-assembled monolayer (SAM) techniques. The change of contact angle of water on InN surface was observed from 0o, indicating the O2 plasma cleaning, to 68o after 1.5 h vapor deposition. MPTMS with -SH terminal functional groups was used to immobilize probe DNA with acrylic phosphoramidite modification at 5'-end. After immersed in 10 uM DNA probes solution for 12 h, the functionalized InN ISFET was used to perform the hybridization with complementary single stranded (ss) DNA 5'-ATTGTTATTAGG-3'. A drain-source current decrease (~6 uA) was observed when a complementary DNA was introduced to the gate region of ISFETs. The current decrease is attributed to the attachment of negatively charged DNA. For a 12-mer oligonucleotide probe, the detection of 1 nM target DNA was accomplished, while the noncomplementary DNA with one base mismatch did not show any obvious current variation.

    Abstract I 摘要 II 誌謝 III Table of Contents IV Figure Captions VII List of Tables XII List of Symbols XIII Chapter I: Introduction 1 1.1 Background 1 1.2 Ultrathin InN ISFET 2 1.2.1 Properties of InN Film 2 1.2.2 Detection Mechanism 3 1.2.3 Response to Anion 4 1.3 Motivation and Objective 5 1.4 Organization of this Thesis 6 Chapter II: Literature Survey 7 2.1 DNA Hybridization 7 2.1.1 Introduction 7 2.1.2 Biosensors for DNA Hybridization 9 2.2 Field Effect Transistor Sensors 11 2.2.1 Introduction 11 2.2.2 Functionalization for Biological Recognition 12 2.2.3 Detection Mechanism 15 2.3 FET-Based Biosensors 16 2.3.1 Si-Based Biosensors 18 2.3.2 Diamond-Based Biosensors 19 2.3.3 AlGaN/GaN-Based Biosensors 20 2.3.3 CNT-Based FET Biosensors 21 2.3.4 NW-Based FET Biosensors 22 2.3.5 Comparison 23 Chapter III: Fabrication and Functionalization 24 3.1 Fabrication 24 3.1.1 Design of Channel Width to Length Ratio 24 3.1.2 Electrode Design 25 3.1.3 Process Flow 26 3.1.4 PCB Design 29 3.1.5 Device Encapsulation 30 3.2 Functionalization 31 3.2.1 Molecular Vapor Deposition for Silaniztion 31 3.2.2 Covalent Immobilization of Probe DNA 34 3.2.3 Experimental Section 35 Chapter IV: Measurement 38 4.1 Confirmation of Functionalization 38 4.1.1 Water Contact Angle Measurement 38 4.1.2 XPS Measurement 42 4.1.2.1Summary 48 4.2 Current Measurement with DC Configuration 49 4.2.1 System setup 49 4.2.2 Response to Gate Voltage Modulation 50 4.3 Voltage Measurement with AC Configuration 53 4.3.1 System Setup 55 4.3.2 Response to pH Variation 57 4.3.3 Equivalent Current Response 58 4.4 Time-Resolved pH Measurement 60 4.4.1 System Setup 60 4.4.2 Response to Titration with NaOH 62 Chapter V: Results and Discussion 64 5.1 Electric Detection of Immobilization of Probe DNA 64 5.1.1 I-V Response 64 5.1.2 Resistance Measurement 66 5.2 Electric Detection of DNA Hybridization 67 5.2.1 Detection with DC Configuration 67 5.2.2 Detection with AC Configuration 69 5.2.2.1 Without Functionalization 71 5.2.2.2 With Functionalization 73 5.2.3 Detection of Different Concentration with AC Configuration 75 5.3 Discussion of DNA Assay 77 Chapter VI: Conclusion 79 Chapter VII: Future Work 80 References 81 Appendix 85 Curriculum Vitae 90

    [1] N. Chaniotakis and N. Sofikiti, "Novel semiconductor materials for the development of chemical sensors and biosensors: A review," Analytica Chimica Acta, 2008.
    [2] I. Mahboob, T. Veal, C. McConville, H. Lu, and W. Schaff, "Intrinsic electron accumulation at clean InN surfaces," Physical Review Letters, vol.92, pp.36804, 2004.
    [3] I. Mahboob, T. Veal, L. Piper, C. McConville, H. Lu, W. Schaff, J. Furthmuller, and F. Bechstedt, "Origin of electron accumulation at wurtzite InN surfaces," Physical Review B, vol.69, pp.201307, 2004.
    [4] "Structure of wurtzite," http://commons.wikimedia.org/wiki/Image:Wurtzite.jpg
    [5] Y.-S. Lu, C.-C. Huang, J. A. Yeh, C.-F. Chen, and S. Gwo, "InN-based anion selective sensors in aqueous solutions," Applied Physics Letters, vol.91, pp.202109, 2007.
    [6] 何建霖, "氮化銦氫離子感應場效電晶體,"奈米工程與微系統所. 碩士 新竹: 國立清華大學, 2008.
    [7] L. N. David, Principle of Biochemistry, Nelson Cox, US: W. H. Freeman and Company New York, 2005.
    [8] "Chemical structure of DNA," http://en.wikipedia.org/wiki/DNA
    [9] B. R. Eggins, Chemical Sensors and Biosensors, John Wiley, 2001.
    [10] J. Epstein, M. Lee, D. Walt, "High-density fiber-optic genosensor microsphere array capable of zeptomole detection limits," Analatical Chemistry, vol.74, pp.1836-1840, 2002.
    [11] A. W. Peterson, R. J. Heaton and R. M. Georgiadis, "The effect of surface probe density on DNA hybridization," Nucleic Acids Reasearch, vol.29, pp.5163, 2001.
    [12] S. Xiaodi, R. Rudolf, W. Yingju, W. Guangyu, and K. Wolfgang, "Detection of point mutation and insertion mutations in DNA using a quartz crystal microbalance and mutS, a mismatch binding protein," Analytical Chemistry, vol.76, pp.489, 2004.
    [13] S. H. Brewer, s. J. Anthireya, S. E. Lappi, D. L. Drapcho, and Stefan Franzen, "Detection of DNA hybridization on gold surfaces by polarization modulation infrared reflection absorption spectroscopy," Langmuir, vol.18, pp.4460-4464, 2002.
    [14] J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Guntherodt, C. Gerber, and J. K. Gimzewski, "Translating biomolecular recognition into nanomechanics," Science, vol.288, pp.316, 2000.
    [15] B. Massimo, B. Annalisa, R. Lugi, A. Andrea, F. Paolo, and B. Imrich, "Fully electronic DNA hybridization detection by a standard CMOS biochip," Sensors and Actuators B, vol.118, pp.41, 2006.
    [16] R. F. Taylor and J. S. Schultz, Handbook of Chmecial and Biological Sensors: IOP Publishing Ltd, 1996.
    [17] M. Curreli, R. Zhang, F. N. Ishikawa, H.-K Chang, R. J. Cote, C. Zhou, and M. E. Thompson, "Real-time, label-free detection of biological entities using nanowire-based FETs," IEEE Transctions on Nanotechnology, vol.7, pp.651, 2008.
    [18] T. Casss and F. S. Ligler, Immobilized Biomolecules in Analysis, Oxford University Press, 1998.
    [19] T. Uno, H. Tabata, and T. Kawai, "Peptide-nucleic acid-modified ion-sensitive field-effect transistor-based biosensor for direct detection of DNA hybridization," Analytical Chemistry, vol.79, pp.52, 2007.
    [20] E. Souteyrand, J. P. Cloarec, J. R. Martin, C. Wilson, I. Lawrence, S. Mikkelsen, and M. F. Lawrence, "Direct detection of the hybridization of synthetic homo-Oligomer DNA sequences by field effect," Journal of Physical Chemistry B, vol.101, pp.2980, 1997.
    [21] K.-S Song, G-J Zhang, Y. Nakamura, K. Furukawa, T. Hiraki, J.-H Yang, T. Funatsu, I. Ohdomari, and H. Kawarada, "Label-free DNA sensors using ultrasensitive diamond field-effect transistors in solution," Physical Review E, vol.74, pp.041919, 2006.
    [22] G. J. Zhang, K. S. Song, Y. Nakamura, T. Funatsu, I. Ohdomari, and H. Kawarada, "DNA micropatterning on polycrystalline diamond via one-step direct amination," Langmuir vol.22, pp.3728, 2006.
    [23] A. P. Zhang, L. B. Rowland, E. B. Kaminsky, V. Tilak, J. C. Grande, J. Teetsov, A. Vertiatchikh and L. F. Eastman, "Correlation of device performance and defects in AlGaN/GaN high-electron mobility transistors," Journal of Electronic Materials, vol.32, pp.388, 2007.
    [24] B. S. Kang, F. Ren, L. Wang, C. Lofton, Weihong Tan, S. J. Pearton, A. Dabiran, A. Osinsky, and P. P. Chow, "Electrical detection of immobilized proteins with ungated AlGaN/GaN high-electron-mobility transistors," Applied Physics Letters, vol.87, pp.023508, 2005.
    [25] B. S. Kang, S. J. Pearton, J. J. Chen, F. Ren, J. W. Johnson, R. J. Therrien, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum, "Electrical detection of deoxyribonucleic acid hybridization with AlGaN/GaN high electron mobility transistors," Applied Physics Letters, vol.89, pp.122102, 2006.
    [26] F. Patolsky, G. Zheng, and C. M. Lieber, "Nanowire-based biosensors," Analytical Chemistry, vol.78, pp.4260, 2006.
    [27] B. L. Allen, P. D. Kichambare, and A. Star, "Carbon nanotube field-effect-transistor-based biosensors," Advanced Materials, vol.19, pp.1439, 2007.
    [28] X. Tang, S. Bansaruntip, N. Nakayama, E. Yenilmez, Y.-L. Chang, and Q. Wang, "Carbon nanotube DNA sensor and sensing mechanism," Nano Letters, vol.6, pp.1632, 2006.
    [29] Z. Gao, A. Agarwal, A. D. Trigg, N. Singh, C. Fang, C.-H. Tung, Y. Fan, K. D. Buddharaju, and J. Kong, "Silicon nanowire arrays for label-free detection of DNA," Analytical Chemistry, vol.79, pp.3291, 2007.
    [30] E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, "Importance of the Debye screening length on nanowire field effect transistor sensors," Nano Letters, vol.7, pp.3405, 2007.
    [31] G. Zheng, F. Patolsky, Y. Cui, W.-U. Wang and Charles M Lieber, "Multiplexed electrical detection of cancer markers with nanowire sensor arrays," Nature Biotechnology, vol.23, pp.1294, 2005.
    [32] Y. L. Bunimovich, Y. -S. Shin, W.-S. Yeo, M. Amori, G. Kwong, and J. R. Heath, "Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution," Journal of the American Chemical Society, vol.128, pp.16323, 2006.
    [33] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, "Sequence-specific label-free DNA sensors based on silicon nanowires," Nano Letters, vol.4, pp.245, 2004.
    [34] K. Rohit, B. P. Gila, L. P. Stafford, S. J. Pearton, F. Ren, and A. Osinsky, "Thermal stability of Ohmic contacts to InN," Applied Physics Letters, vol.16, pp. 90, 2007.
    [35] S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, "Heteroepitaxial growth of wurtzite InN films on Si(111) exhibiting strong near-infrared photoluminescence at room temperature," Applied Physics Letters, vol.84, pp.3765, 2004.
    [36] "Surface engineering opportunities," www.micronanosystems.info, 2007.
    [37] B. Kobrin, W. Ashurst, R. Maboudian, V. Fuentes, R. Nowak, R. Yi, and J. Chinn, "MVD Technique of Surface Modification," 2004.
    [38] B. Kobrin, V. Fuentes, S. Dasaradhi, R. Yi, R. Nowak, J. Chinn, R. Ashurst, C. Carraro, and R. Maboudian, "Molecular vapor deposition – An improved vapor-phase deposition technique of molecular coatings for MEMS devices," Semiconductor Equipment and Materials International, 2004.
    [39] B. Kobrin, J. Chinn, and R. W. Ashurst, "Vapor deposition of composite organic-inorganic films," 2005.
    [40] S. Flink, F. Veggel, and D. Reinhoudt, "Sensor functionalities in self-assembled monolayers," Advanced Materials, vol.12, pp.1315, 2000.
    [41] E. Pavlovic, A. P. Quist, U. Gelius, and S. Oscarsson, "Surface functionalization of silicon oxide at room temperature and atmospheric pressure," Journal of Colloid and Interface Science, vol.254, pp.200, 2002.
    [42] E. J. Devor, and M. A. Behlke, "Strategies for attaching oligonucleotides to solid supports," Integrated DNA Technologies, 2005.
    [43] B. Pattier, J.-F. Bardeau, M. Edely, A. Gibaud, and N. Delorme, "Cheap and robust ultraflat gold surfaces suitable for high-resolution surface modification," Langmuir, vol.24, pp.821, 2008.
    [44] T. L. Barr and Y. L. Liu, "An X-ray photoelectron spectroscopy study of the valence band structure of indium oxides," Journal of Physics and Chemistry of Solids, vol.50, no.7, pp.657-664, 1989.
    [45] Manual of Mdoel SR830 DSP Lock-in amplifier, Stanford Research Systems, Inc. 2006.
    [46] C. D. Fung, P. W. Cheung, and W. H. Ko, "A generalized theory of an electrolyte-insulator-semiconductor field-Effect transistor," IEEE Transactions on Electron Devices, vol.33, no.1, 1986.
    [47] D. E. Yates, S. Levine, and T. W. Healy, "Site-binding model of the electrical double layer at the oxide/water interface," Journal of the Chemical Society, Faraday Transactions vol.1, no.70, 1974.
    [48] J. Ross, Nucleic Acid Hybridization Essential Techniques, John Wiley & Sons Ltd, pp.1, 1998
    [49] D. K. Aswal, S. Lenfant, D. Guerin, J. V. Yakhmi and D. Vuillaume, Condensed Matter, vol.1, pp.725, 2005.
    [50] "Structural elements of the most common nucleotides," http://en.wikipedia.org/wiki/Nucleotide

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE