簡易檢索 / 詳目顯示

研究生: 陳奕安
Chen, Yi-An
論文名稱: 中學數學教科書幾何計算任務之內容分析:以台灣、日本、新加坡為例
Content analysis of geometric calculation tasks in middle school mathematics textbook: Taking Taiwan, Japan, and Singapore as examples
指導教授: 許慧玉
Hsu, Hui-Yu
口試委員: 鄭英豪
Cheng, Ying-Hao
陳建誠
Chen, Jian-Cheng
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 數理教育研究所
Graduate Institute of Mathematics and Science Education
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 103
中文關鍵詞: 幾何任務GCN任務認知複雜度內容分析
外文關鍵詞: geometry task, GCN task, cognitive complexity, content analysis
相關次數: 點閱:124下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對臺灣、日本與新加坡三國的中學數學教科書,分析幾何計算任務的認知複雜度,並比較各國教材在平行線截角性質與四邊形性質單元中的題目設計特徵。研究採用內容分析法,透過量化分析統計不同版本教材的解題複雜度與圖形複雜度,探討教材間的差異及其對教學的潛在影響。
    研究結果顯示,新加坡的 GCN 任務的認知複雜度最高 (平均 11.87) ,其次為日本 (10.59) ,而臺灣最低 (9.64) 。日本教材在圖形複雜度上較高,但解題複雜度則相對穩定。新加坡教材在 G3 水準時大幅提升圖形與解題的挑戰性,而臺灣教材則在不同版本間展現不同的難度梯度。其中,臺灣 K 版與 N 版在例題與練習題的難度變化上存在顯著差異,K 版的習作難度跳躍較大,而 N 版則較為均衡。日本教材高度依賴習作來提升學生挑戰性,而新加坡教材則主要透過課本提供高強度練習。進一步分析解題複雜度與圖形複雜度的關係發現,當解題複雜度提高時,圖形複雜度通常較低,顯示教材可能透過調整圖形複雜度來控制學生的認知負擔,使其更能專注於數學推理與計算。
    基於研究結果,本研究提出教學建議,鼓勵教師根據教材設計特點調整教學策略。在教學時,應適當地補充較高複雜度的例題給予學生足夠的學習機會,使其能夠順利地獨自處理較高複雜度的練習題。在不同難度的題目中,教師可適時引導、提供鷹架,讓學生發展多步驟解題策略以提升其數學推理與計算能力,或是圖形拆解策略使其能夠順利理解圖形複雜度較高的任務圖形。此外,教師可透過對比不同版本的教材,設計分層練習,確保學生能夠循序漸進地掌握數學知識。本研究亦建議未來可進一步探討不同教材對學生數學學習成果的影響,以提供更具體的數學教育改革建議。

    關鍵字:幾何任務、GCN任務、認知複雜度、內容分析


    This study focuses on middle school mathematics textbooks from Taiwan, Japan, and Singapore, analyzes the cognitive complexity of geometric calculation tasks, and compares the design characteristics of questions in the units of parallel line truncated properties and quadrilateral properties in each country's textbooks. The research uses content analysis method to quantitatively analyze the problem-solving complexity and graphic complexity of different versions of teaching materials to explore the differences between teaching materials and their potential impact on teaching.
    The research results show that Singapore has the highest cognitive complexity of GCN tasks (average 11.87), followed by Japan (10.59), and Taiwan has the lowest (9.64). Japanese textbooks have higher graphics complexity, but the problem-solving complexity is relatively stable. Singaporean textbooks greatly increase the challenge of graphics and problem solving at the G3 level, while Taiwanese textbooks show different difficulty gradients between different versions. Among them, there is a significant difference in the difficulty of examples and exercises between Taiwan's K version and N version. The K version has a larger jump in difficulty of exercises, while the N version is more balanced. Japanese textbooks rely heavily on exercises to challenge students, while Singaporean textbooks mainly provide high-intensity exercises through textbooks. Further analysis of the relationship between problem-solving complexity and graph complexity revealed that when problem-solving complexity increases, graph complexity is usually lower, indicating that teaching materials may control students' cognitive load by adjusting graph complexity, allowing them to focus more on mathematical reasoning and calculations.
    Based on the research results, this study puts forward teaching suggestions and encourages teachers to adjust teaching strategies according to the design characteristics of teaching materials. When teaching, examples of higher complexity should be appropriately supplemented to give students enough learning opportunities so that they can successfully handle higher complexity exercises on their own. For questions of different difficulty, teachers can provide timely guidance and scaffolding to allow students to develop multi-step problem-solving strategies to improve their mathematical reasoning and calculation abilities, or graphic disassembly strategies to enable students to successfully understand graphically complex task graphics. In addition, teachers can compare different versions of teaching materials and design layered exercises to ensure that students can master mathematical knowledge step by step. This study also suggests that the impact of different teaching materials on students' mathematics learning outcomes can be further explored in the future to provide more specific mathematics education reform suggestions.
    Keywords: geometry task, GCN task, cognitive complexity, content analysis

    摘要 目錄 第壹章 緒論---------------------------------------1 第一節 研究背景與動機------------------------------1 第二節 研究目的與問題------------------------------3 第三節 名詞釋義------------------------------------3 第四節 研究範圍與限制------------------------------4 第貳章 文獻探討------------------------------------6 第一節 學習機會------------------------------------6 第二節 三國課綱內的平行與四邊形單元------------------7 第三節 國內外相關研究------------------------------15 第參章 研究方法------------------------------------18 第一節 研究方法------------------------------------18 第二節 研究對象------------------------------------19 第三節 分析單位及分析架構---------------------------23 第四節 資料處理及資料分析---------------------------40 第肆章 結果與討論----------------------------------43 第一節 三國教科書幾何題型分布之分析比較--------------43 第二節 三國教科書幾何計算任務認知複雜度之分析比較-----58 第三節 三國教科書幾何計算練習題認知複雜度之分析比較---87 第伍章 結論與建議----------------------------------95 第一節 結論---------------------------------------95 第二節 建議---------------------------------------97 參考文獻------------------------------------------99

    小島宏. (2019). 日本新學習指導要領與教科書編輯間的關係-以小學數學科為例. 教科書研究, 12(3), 89-101.
    林志鴻. (2014). 幾何問題解決的認知負荷與圖形理解: 以眼動追蹤及手寫板記錄歷程.
    林碧珍, & 蔡文煥. (2005). TIMSS 2003 臺灣國小四年級學生的數學成就及其相關因素之探討. 科學教育月刊(285), 2-38.
    林福來, 單維彰, 李源順, & 鄭章華. (2013). 整合型研究子計畫三 [十二年國民基本教育數學領域綱要內容之前導研究] 研究報告. 新北市: 國家教育研究院.
    徐偉民. (2013). 國小數學教科書數學問題類型與呈現方式之比較分析-以臺灣, 芬蘭, 新加坡為例. 科學教育學刊, 21(3), 263-289.
    徐偉民. (2017). 小學數學教科書使用之探究. Journal of Textbook Research, 10(2), 99-132.
    徐偉民, & 柯富渝. (2014). 臺灣, 芬蘭, 新加坡國小數學教科書幾何教材之比較. Journal of Textbook Research, 7(3), 101-141.
    教育部. (2014). 十二年國民基本教育課程綱要總綱.
    傅佩榮. (2020). 柏拉圖. 東大圖書股份有限公司.
    楊思偉, & 李宜麟. (2020). 日本中小學課綱研訂與審議運作模式之探討. 臺灣教育評論月刊, 9(1), 65-71.
    楊德清, & 鄭婷芸. (2015). 臺灣, 美國與新加坡國中階段幾何教材內容之分析比較. 教育科學研究期刊, 60(1), 33-72.
    歐用生. (2003). 內容分析法及其在教科書研究上的應用. 教科書之旅 (頁 149-170). 臺北縣: 中華民國教材研究發展學會.
    歐用生, & 莊梅枝. (2003). 歐用生教授: 教科書之旅. 中華民國教材研究發展學會.
    鄭章華, & 林佳慧. (2021). 從數學教科書設計初探素養導向理念之轉化. 台灣教育研究期刊, 2(3), 27-46.
    Carroll, J. B. (1963). A model of school learning. Teachers college record, 64(8), 1-9.
    Council, N. R. (2004). On evaluating curricular effectiveness: Judging the quality of K-12 mathematics evaluations. National Academies Press.
    Elliott, S. N., Kettler, R. J., Beddow, P. A., & Kurz, A. (2011). Handbook of accessible achievement tests for all students: Bridging the gaps between research, practice, and policy. Springer.
    Estrella, S., Zakaryan, D., Olfos, R., & Espinoza, G. (2020). How teachers learn to maintain the cognitive demand of tasks through Lesson Study. Journal of Mathematics Teacher Education, 23, 293-310.
    Fujita, T., & Jones, K. (2002). Opportunities for the development of geometrical reasoning in current textbooks in the UK and Japan. Proceedings of the British Society for Research into Learning Mathematics, 22(3), 79-84.
    Fujita, T., & Jones, K. (2014). Reasoning-and-proving in geometry in school mathematics textbooks in Japan. International Journal of Educational Research, 64, 81-91.
    Guo, S., & Liao, S. (2022). The role of opportunity to learn on student mathematics anxiety, problem-solving performance, and mathematics performance. Frontiers in Psychology, 13, 829032.
    Hadar, L. L. (2017). Opportunities to learn: Mathematics textbooks and students’ achievements. Studies in Educational Evaluation, 55, 153-166.
    Haggarty, L., & Pepin, B. (2002). An investigation of mathematics textbooks and their use in English, French and German classrooms: Who gets an opportunity to learn what? British educational research journal, 28(4), 567-590.
    Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. Second handbook of research on mathematics teaching and learning, 1(1), 371-404.
    Holsti, O. R. (1969). Content analysis for the social sciences and humanities. Reading. MA: Addison-Wesley (content analysis).
    Hong, D. S., & Choi, K. M. (2019). Challenges of maintaining cognitive demand during the limit lessons: understanding one mathematician’s class practices. International journal of mathematical education in science and technology, 50(6), 856-882.
    Hong, Y.-L. (2005). 台灣與日本之十二年數學課程比較 National Central University].
    Hsu, H.-Y. (2023). Taiwanese Teachers’ Collection of Geometry Tasks for Classroom Teaching: A Cognitive Complexity Perspective. In Mathematical Challenges For All (pp. 431-458). Springer.
    Hsu, H.-Y., & Silver, E. A. (2014). Cognitive complexity of mathematics instructional tasks in a Taiwanese classroom: An examination of task sources. Journal for Research in Mathematics Education, 45(4), 460-496.
    Husén, T. (1967). INTERNATIONAL STUDY OF ACHIEVEMENT IN MATHEMATICS, A COMPARISON OF TWELVE COUNTRIES, VOLUME II.
    Jones, K., & Fujita, T. (2013). Interpretations of national curricula: the case of geometry in textbooks from England and Japan. ZDM, 45, 671-683.
    Krippendorff, K. (2018). Content analysis: An introduction to its methodology. Sage publications.
    McDonnell, L. M. (1995). Opportunity to learn as a research concept and a policy instrument. Educational evaluation and policy analysis, 17(3), 305-322.
    Miyakawa, T. (2017). Comparative analysis on the nature of proof to be taught in geometry: the cases of French and Japanese lower secondary schools. Educational Studies in Mathematics, 94, 37-54.
    MOE. (2020). G3 and G2 Mathematics Syllabuses.
    Nicol, C. C., & Crespo, S. M. (2006). Learning to teach with mathematics textbooks: How preservice teachers interpret and use curriculum materials. Educational studies in mathematics, 62(3), 331-355.
    Parrish, C. W., & Bryd, K. O. (2022). Cognitively Demanding Tasks: Supporting Students and Teachers during Engagement and Implementation. International Electronic Journal of Mathematics Education, 17(1).
    Rim, H., & Kim, B. (2022). Analysis of proof content in Korea, Japan, and IB middle school mathematics curriculum and textbooks. Journal of Curriculum Evaluation, 25(2), 89-117.
    Stein, M. K., Remillard, J., & Smith, M. S. (2007). How curriculum influences student learning. Second handbook of research on mathematics teaching and learning, 1(1), 319-370.
    Stein, M. K., Smith, M. S., Henningsen, M. A., & Silver, E. A. (2009). Implementing standards-based math instruction: A casebook for professional development. Teachers College Press.
    Takeuchi, H., & Shinno, Y. (2020). Comparing the lower secondary textbooks of Japan and England: A praxeological analysis of symmetry and transformations in geometry. International Journal of Science and Mathematics Education, 18(4), 791-810.
    Törnroos, J. (2005). Mathematics textbooks, opportunity to learn and student achievement. Studies in educational evaluation, 31(4), 315-327.
    Yang, D.-C., Tseng, Y.-K., & Wang, T.-L. (2017). A comparison of geometry problems in middle-grade mathematics textbooks from Taiwan, Singapore, Finland, and the United States. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 2841-2857.
    Zhu, Y., & Fan, L. (2006). Focus on the representation of problem types in intended curriculum: A comparison of selected mathematics textbooks from Mainland China and the United States. International Journal of Science and Mathematics Education, 4(4), 609-626.

    QR CODE