研究生: |
賴成孝 Cheng-Hsiao Lai |
---|---|
論文名稱: |
高動態範圍之數位輸出像素感測器 High Dynamic Range Digital Output Pixel Sensors |
指導教授: |
金雅琴
Ya-Chin King 黃錫瑜 Shi-Yu Huang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 108 |
中文關鍵詞: | 動態範圍 、數位像素感測器 |
外文關鍵詞: | Dynamic Range, Digital Pixel Sensor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來由於元件操作電壓隨著製程的演進而逐漸降低,因而導致CMOS APS的輸出範圍(Output Swing)以及訊雜比(Signal to Noise Ratio, SNR)也跟著逐漸縮小,因而增加了後段類比數位轉換器(ADC)電路設計上的困難。因此,近年來將類比數位轉換器做在每一個像素內的數位像素感測器(Digital Pixel Sensor, DPS)的研發已經成為一種趨勢。由於每一個像素的輸出已經是數位訊號,因此,低的輸出範圍以及行與行之間的讀出雜訊(readout noise)對於像素特性的影響將會大大的降低。但是較大的像素面積是數位像素感測器的最大缺點,這將限制數位像素感測器在高解析度影像感測器上的應用。
本篇論文提出的第一個架構是一個時脈(clock)輸出的數位像素感測器,而它每一像素只需要十個電晶體。這個新的像素的輸出特性類似於一個放大的對數輸出響應,這樣的輸出特性和人的眼睛對光的響應非常的類似。此外這個像素的比較器輸入補偏電壓(input offset voltage)的問題,也可以經由特殊的操作來解決。且這個新像素的動態範圍,經由模擬結果得知可以輕易的大於90dB。然而功率消耗太大以及操作速度太慢都是它的問題,因而會限制它的應用範圍。
而本篇論文所提出的第二個新的架構,每一個像素包含有一個位元的記憶體,因此他每一個像素需要十五個電晶體。雖然這個像素比前一個像素多了五個電晶體,但他卻完全的擁有第一個像素的優點,然而第一像素的缺點操作速度太慢以及功率消耗太大都可以獲得有效的改善。由於這個數位像素感測器的操作是一次讀出一個位元,因而我們可以利用這個特性實現影像的邊緣偵測應用,進而更可以偵測整個影像感測器陣列是否有壞點。
Abstract
Digital pixel sensor (DPS) which includes an A/D converter in each pixel has been developed in the past few years. With pixel level A/D conversion, higher SNR can be achieved, and the small output voltage swing has less impact on imaging quality. Furthermore, by employing A/D converter and memory at each pixel, high speed digital readout can be achieved and therefore provide more rooms for aggressive image-processing applications. Studies adapting multiple imaging capturing or synchronous self-reset schemes were proposed for widening the dynamic range of a linear response pixel. Even though, large pixel area is still the main drawback for most digital pixel sensors, and the massively data processing units required to extend dynamic range increases the complexity of periphery circuits and consumes more dynamic power.
In this dissertation, we first presented a clock count output digital pixel sensor which requires only 10 transistors per pixel. The pixel is the clock count output, and is named the CPS. An amplified logarithmic output response similar to the response to light of the human eye is demonstrated by this pixel. The self-offset cancellation scheme of the CPS substantially reduces the FPN caused by the comparator offset drops to less than 2LSB. Moreover, from the estimated results, the dynamic range of the CPS is at 96dB with an 8-bit ADC resolution. Although the CPS can provide a lower supply voltage and a higher dynamic range, the dynamic power consumption and readout speed severely limit the CPS to be applied to high resolution imagers.
To improve the dynamic power and readout speed issues, a new architecture of the bit-frame digital pixel sensor is presented. This holds the benefits of the CPS, such as non-linear transfer curve in one time sampling and its dynamic range, which are also proportional to the ADC resolution. The pixel requires 15 transistors per pixel. The readout speed of this pixel is significantly increased and consumes very low power. Moreover, due to its unique characteristics, a simple manner of detecting the object edges of an image is proposed. By applying this edge detection manner, the self-calibration of faulty pixels can also be implemented.
[1] R.H. Nixon, S.E. Kemeny, B. Pain, C.O. Staller, and E.R. Fossum, “256×256 CMOS Active Pixel Sensor Camera-on-a-Chip” IEEE Journal of Solid-State Circuits, Vol.31, p.2046, Dec., 1996
[2] B. Ackland and A. Dickinson, “Camera on a Chip” ISSCC, Digest of Technical Papers, p.22, Feb., 1996
[3] E. Goujou, J. Mitern, and O. Laligant, “A Low Cost and Intelligent Video Survellance System,” Proceedings of the IEEE International Symposium on Industrial Electronics, Vol.1, p.405, July 1995.
[4] B. Bhanu, R. Nevatia, and E.M. Riseman, “Dynamic-Scene and Motion Analysis Using Passive Sensors,” IEEE Expert, Vol.7, p.45, Feb. 1992.
[5] S. Smith, J. et a. “A Single-Chip 306x244-Pixel CMOS NTSC Video Camera,” ISSCC Digest of Technical Papers, p.170, Feb. 1998.
[6] E.R. Fossum, “CMOS Image Sensors: Electronic camera-on-a-chip,” IEEE Trans. on Electron Devices, Vol.44, p.1689, Oct. 2001.
[7] A. El Gamal, H.Eltoukhy, “CMOS Image Sensors” IEEE Circuits and Devices Magazine, Vol.21, p.6, May 2005.
[8] D.F. Barbe, “Imaging Devices Using the Charge-Coupled Concept,” Proceedings of the IEEE, Vol.63, No.1, p.38, Jan. 1975.
[9] L.J. Kozlowski, J. Luo, and A. Tomasini, “Performance Limits in Visible and Infrared Image Sensors,” IEDM Technical Digest. International, 1999.
[10] H.-S. Wong, “Technology and Device Scaling Considerations for CMOS Imagers,” IEEE Trans. on Electron Devices, Vol.43, p.2131, Dec. 1996.
[11] J. Hynecek, “A New Device Architecture Suitable for High-resolution and High Performance Image Sensors,” IEEE Trans. on Electron, Devices, Vol.35, p.646, May 1998.
[12] E.R. Fossum, “Active Pixel Sensors: Are CCD Dinosaurs?,” Proc. SPIE, Vol.1900, p.14 , 1993.
[13] H.-S. Wong and W. Yang, “From Photons to Bits – Is Electronic Imaging at a Watershed?,” Int. Solid-State Circuits Conference, p.108, 1996.
[14] O. Yadid-Pecht and R. Etienne-Cummings, “CMOS imagers: from photo- transduction to image processing” Cluwer Academic Publishers, 2004.
[15] X.Q. Liu, “CMOS Image Sensors Dynamic Range and SNR Enhancement via Statistical Signal Processing” Ph.D Thesis, Stanford University, CA, 2002.
[16] S.K. Mendis, S.E. Kemeny, R.C. Gee, B. Pain, C.O. Staller, Q. Kim, and E.R. Fossum, “CMOS Active Pixel Image Sensors for Highly Integrated Imaging Systems,” IEEE Journal of Solid-State Circuits, Vol.32, No.2 Feb. 1997.
[17] R.H. Dyck and G.P. Weckler, “Integrated Arrays of Silicon Photodetectors for Image Sensing,” IEEE Trans. on Electron Devices, Vol. 15, p.196, Apr. 1968.
[18] P. Noble, “Self-scanned Silicon Image Detector Arrays,” IEEE Trans. on Electron Devices, Vol. ED-15, p.202, Apr. 1968.
[19] O. Yadid-Pecht, B. Mansoorian, E.R. Fossum, and B. Pain, “Optimization of Noise in CMOS Active Pixel Sensors for Detection of Ultra Low Light Levels,” Proc. SPIE, Vol.3019, p.125, 1997.
[20] T. Lulé, S. Benthien, H. Keller, F. Mütze, P. Rieve, K. Seibel, Micheal Sommer, and M. Böhm, “Sensitivity of CMOS Based Imagers and Scaling Perspectives,” IEEE Trans. on Electron Devices, Vol.47, No.11, p.2110, Nov. 2000.
[21] S.K. Mendis, S.E. Kemeny, R.C. Gee, B. Pain, C.O. Staller, Q. Kim, and E.R. Fossum, “CMOS Active Pixel Image Sensors for Highly Integrated Imaging Systems,” IEEE Journal of Solid-State Circuits, Vol.32, No.2 Feb. 1997.
[22] A. El Gamal and H.-S. Wong, “Image Sensors” Course of Stanford University, Spr., 2004.
[23] I. Takayanagi et al. “A 1.25-inch 60-Frames/s 8.3-M-Pixel Digital-Output CMOS Image Sensor” IEEE Journal of Solid-State Circuits, Vol.40, p. 2305, Nov. 2005.
[24] S. Smith et al. “A single-chip 306×244-pixel CMOS NTSC video camera” ISSCC, Digest of Technical Papers, p.170, Feb., 1998
[25] S. Decker, D. McGrath, K. Brehmer, and C. G. Sodini, “A 256×256 CMOS imaging array with wide dynamic range pixels and column-parallel digital output” IEEE Journal of Solid-State Circuits, Vol.33, p. 2081, Dec. 1998.
[26] A. Dickinson, S. Mendis, D. Inglis, K. Azadet, and E. R. Fossum, “CMOS digital camera with parallel analog to digital conversion architecture” presented at 1995 IEEE Workshop CCD’s and Advanced Image Sensors, Apr. 1995.
[27] F. Andoh, H. Shimamoto, and Y. Fujita, “A Digital Pixel Image Sensor for Real-time Readout” IEEE Trans. on Electron Devices, Vol.47, p.2123, Nov. 2000
[28] S. Kleinfelder, S.H. Lim, X. Liu, and A. El Gamal, “A 10000 Frames/s CMOS Digital Pixel Sensor” IEEE Journal of Solid-State Circuits, Vol.36, p. 2049, Dec. 2001
[29] J.L. Trepanier, M. Sawan, Y. Audet, and J. Coulombe, “A Wide Dynamic Range CMOS Digital Pixel Sensor” IEEE International MWSCAS, Vol.2, Aug. 2002
[30] A. El Gamal, “Trends in CMOS Image Sensor Technology and Design” IEDM Digest of Technical Papers, p.805, Dec. 2002
[31] A. Bermak, “A CMOS Imager with PFM/PWM Based Analog-to-Digital Converter” Proceedings of IEEE International Symposium on Circuits and Systems, Vol. 4, p.53, May, 2002
[32] A. Kitchen, A. Bermak and A. Bouzerdoum, “A PWM digital pixel sensor based on asynchronous self-resetting scheme” IEEE Electron Device Letters, Vol. 25, No 7, p 471, Jul. 2004.
[33] J. Doge, G. Schonfelder, G.T. Streil and A. Konig, “An HDR CMOS Image Sensor With Spiking Pixels, Pixel-level ADC, and Linear Characteristics” IEEE Trans. on Circuits and Systems II, Vol. 49, No.2, p.155, Feb. 2002
[34] E. Culurciello, R. Etienne-Cummings, and K.A. Boahen, “A Biomorphic Digital Image Sensor” IEEE Journal of Solid-State Circuits, vol. 38, no. 2, p.281, Feb. 2003
[35] D. X. Yang, A. El Gamal, B. Fowler, and H. Tian, “A 640×512 CMOS Image Sensor with Ultrawide Dynamic Range Floating-Point Pixel-Level ADC” IEEE Journal of Solid-State Circuits, Vol.34, No. 12, p.1821, Dec. 1999
[36] J. Rhee and Y. Joo, “Wide dynamic range CMOS image sensor with pixel level ADC” Electronics Letters, Vol. 39, p.360, Feb., 2003
[37] D. X. Yang, B. Fowler, and A. El Gamal, "A Nyquist Rate Pixel Level ADC for CMOS Image Sensors," IEEE Journal of Solid State Circuits, Vol. 34, p. 348 Mar. 1999.
[38] A. El Gamal, D. X. Yang, and B. Fowler, “Pixel level Processing - Why?, What?, and How ?” Proceedings of the SPIE, Vol. 3650, p. 2, Jan. 1999
[39] S. Borkar, “Obeying Moore's law beyond 0.18 micron” Proceedings of IEEE International ASIC/SOC Conference, p.26, Sep. 2000
[40] U. Ringh, C. Jansson, and K. Liddiard, “Readout concept employing a novel on Chip 16 bit ADC for smart IR focal plane arrays,” Proceedings of SPIE, vol. 2745, p.99, Apr. 1996
[41] B. Pain and E. Fossum, “Approaches and analysis for on-focal-plane analog-to- digital conversion,” Proceedings of SPIE, vol. 2226, p.208, Apr. 1994
[42] Pablo M. Acosta-Serafini, “Predictive Multiple Sampling Algorithm with Overlapping Integration Intervals for Linear Wide Dynamic Range Integrating Image Sensors” Ph.D Thesis, Massachusetts Institute of Technology, 2004
[43] H. Eltoukhy, K. Salama, A. El Gamal, and R. Davis, “A 0.18µm CMOS 10-6lux Bio-luminescence Detection System-on-Chip” ISSCC, Digest of Technical Papers, p.222, Feb., 2004
[44] D. N. Yaung et al. “Nonsilicide source/drain pixel for 0.25-μm CMOS image sensor” IEEE Electron Device Letters, Vol. 22, No 2, p 71, Feb. 2001.
[45] S. G. Wuu et al. “A high performance active pixel sensor with 0.18μm CMOS color imager technology” IEDM Digest of Technical Papers, p.24.3.1, Dec. 2001
[46] H. C. Chien et al. “Active pixel image sensor scale down in 0.18μm CMOS technology” IEDM Digest of Technical Papers, p.831, Dec. 2002
[47] D. Joseph, and S. Collins, “Modeling, calibration, and rendition of color logarithmic CMOS image sensors” IEEE Trans. on Inst. and Meas. Vol.52, No. 5 p.1581 Oct. 2003
[48] S. Kavadias, et al. “A logarithmic response CMOS image sensor with on-chip calibration” IEEE Journal of Solid-State Circuits, Vol.35, p.1146, Dec. 2001
[49] M. Loose, K. Meier, and J. Schemmel, “A Self-Calibrating Single-Chip CMOS Camera with Logarithmic Response” IEEE Journal of Solid-State Circuits, Vol.36, p.586, Apr. 2001
[50] G. G. Storm et al. “Combined linear-logarithmic CMOS image sensor” ISSCC, Digest of Technical Papers, p.116, Feb., 2004
[51] L. W. Lai, C. H. Lai, and Y. C. King, “A novel logarithmic response CMOS image sensor with high output voltage swing and in-pixel fixed-pattern noise reduction” IEEE Sensors Journal, Vol.4, p.122, Feb. 2004
[52] D. MacSweeney et al. “A SPICE Compatible Subcircuit Model for Lateral Bipolar Transistors in a CMOS Process,” IEEE Trans. on Electron Devices, Vol.45, p.1978, Oct. 1998
[53] W. Zhang and M. Chan, “A High Gain N-Well/Gate Tied PMOSFET Image Sensor Fabricated from a Standard CMOS Process” IEEE Trans. on Electron Devices, Vol.48 p.1097, June 2001
[54] Web-Site: http://www.dpreview.com/news/0301/03012202fujisuperccdsr.asp
[55] B. R. Lin, S. Y. Huang, C. H. Lai, and Y. C. King, “A high dynamic range CMOS image sensor design based on two-frame composition” Proceedings of IEEE International SOC Conference, p.389 Sept. 2003
[56] D. X. Yang, “Digital Pixel CMOS Image Sensors” Ph.D Thesis, Stanford University, CA, 2000.
[57] C. H. Lai, Y. P. Yu, and Y. C. King, “A New Well Capacity Adjusting Scheme for High Sensitivity, Extended Dynamic Range CMOS Imaging Pixel Sensors” Japanese Journal of Applied Physics Vol. 44, No. 4B, p.2214, Apr. 2005
[58] D.X. Yang, and A. El Gamal “Comparative Analysis of SNR for Image Sensors with Enhanced Dynamic Range” Proceedings of the SPIE, Vol.3649, p.197, Jan. 1999
[59] K.Hara, H. Jubo, M. Kimura, F. Murao, and S. Komori “A linear-logarithmic CMOS sensor with offset calibration using an injected charge signal” ISSCC, Digest of Technical Papers, p.354, Feb., 2005
[60] D. Scheffer, B. Dierickx, and G. Meynants “Random addressable 2048×2048 active pixel image sensor” IEEE Trans. on Electron Devices, Vol.44 p.1716, Oct. 1997
[61] M.Sasaki, M Mase, S. Kawahito, and Y. Tadokoro “A wide dynamic range CMOS image sensor with multiple short-time exposures” Proceedings of IEEE sensors, Vol.2, p.967, Oct. 2004
[62] A. El Gamal, “High Dynamic Range Image Sensors”, ISSCC Tutorial, 2002
[63] M. Tabet, and R. Hornsey “CMOS image sensor camera with focal plane edge detection” IEEE Canadian Conference on Electrical and Computer Engineering 2001
[64] N. Massari, M. Gottardi, L. Gonzo, D. Stoppa, A. Simoni, “A CMOS image sensor with programmable pixel-level analog processing” IEEE Trans. on Neural Networks, Vol.16 p.1673, Nov. 2005
[65] S. Mizuno, K. Fujita, H. Yamamoto, N. Mukozaka, and H. Toyoda, “A 256×256 compact CMOS image sensor with on-chip motion detection function” IEEE Journal of Solid-State Circuits, Vol.38, p.1072, June 2003
[66] G. H.Chapman, S. Djaja, D. Y .H Cheung, Y. Audet, I.Koren, Z. Koren, “A self- correcting active pixel sensor using hardware and software correction” IEEE Design & Test of Computers, Vol.21, P.544, Nov. 2004
[67] Y. Audet, and G. H. Chapman, “Design of a self-correcting active pixel sensor” Proceedings of IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, P.26, Oct. 2001.
[68] T. Hamamoto and K. Aizawa, “A computational image sensor with adaptive pixel-based integration time” IEEE Journal of Solid-State Circuits, Vol.36, p.580, April 2001.
[69] T. Yasuda, T. Hamamoto, and K. Aizawa, “Adaptive-integration-time image sensor with real-time reconstruction function” IEEE Trans. on Electron Devices, Vol.50 p.111, Jan. 2003
[70] O. Yadid-Pecht and E. R. Fossum, “Wide intrascene dynamic range CMOS APS using dual sampling” IEEE Trans. on Electron Devices, Vol.44 p.1721, Oct. 1997