簡易檢索 / 詳目顯示

研究生: 楊士霆
論文名稱: 支援技術與諮詢服務供應者營運之業務建議與個人化知識提供模式
An Integrated Model of Business Suggestions and Personal Knowledge Provision for Technology and Service Providers
指導教授: 侯建良
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 227
中文關鍵詞: 知識管理PDA個人特質探勘技術移轉技術研發
外文關鍵詞: Knowledge Management, PDA, Profiling, Technical Transfer, Technology Development
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,企業體普遍面臨產業轉型及競爭環境變革等挑戰,唯有提昇本身之研發技術能力才能改善其經營體質,並需因應時代與市場改變而達成永續經營之理想。在中小型企業居多的台灣,多數企業體無充分能力與人力整合其相關技術資源;在企業本身研發經費、技術人才及管理能力皆有限之情況下,多數業者實需仰賴技術與諮詢服務供應者之技術支援,以委外方式或協同合作導入其科技研發或移轉技術成果,進而增強企業本身之競爭力。然而,對於技術與諮詢服務供應業者之研發人員與業務人員而言,不論於探索技術研發方向、尋找合作客戶及運用相關業務資訊(歷史資料過於龐大)等課題上,皆缺乏客觀之建議與有效地協助。因此,本研究乃根據此些營運議題,結合其此類業者之研發、契約資料及業務人員之潛在資料,進而建構「技術研發方向探索」、「重點客戶搜尋」及「個人特質探勘與知識提供」推論法則,以協助此類業者之營運需求。
    於「技術研發方向探索」方法論中,本研究乃分析技術移轉、推廣等研發資料並建構相關資料模式,以擷取所需之技術資訊,發展「技術研發方向」之探索模式,以探索技術發展趨勢、技術投資效益及技術相關性,進而提供研發人員技術發展之建議。而在「重點/潛在客戶搜尋」方法論中,本研究乃分析客戶合作契約等資料,並擷取所需之客戶、契約資訊,進而建構「重點/潛在客戶」搜尋方法論,以協助業務人員延續客戶契約與開拓新客源。此外,本研究乃期望藉由「PDA(Personal Digital Assistant;PDA)使用者(業務人員)個人特質」之探索,發展PDA個人化加值服務之推論法則,以開發PDA之進階功能(適合且適量地授予相關資訊與知識),進而獲得、運用關鍵之業務資訊,並輔助業務推廣人員進行業務推廣之決策。本研究除發展模式與方法論外,並依此方法論建構一套「業務資訊管理」系統以進行案例驗證,從而確認方法論與技術之可行性。
    整體而言,藉由此三個模式之整合與串連,以提供技術與服務諮詢供應者更為客觀、系統化、有效率之業務發展建議,除解決此類業者的營運瓶頸,而能有效達成扶植產業與企業體之目標與願景。


    For most SMEs (Small and Medium-Sized Enterprises, SMEs) in Taiwan, in order to reduce the R&D (Research and Development, R&D) investment, the technology and service providers (TSPs) are required to provide technical services. Owing to high variety of industry development, the TSPs are dedicated to development of applied technologies. The operation purposes of TSPs are to provide customized services and technologies that meet the various client requirements and to improve capability of their clients via various projects. Previously, the technology development strategies are determined by domain experts or sales through trials and errors. However, the project history is usually too complicated for R&D engineers and sales to utilize for business promotion. Concerning operation characteristics of TSPs, this research develops technology mining, critical customer mining and profiling models based on the project history and user profiles.
    The proposed technology mining model focuses on exploring technologies with higher client demands and significant R&D returns so that the TSPs can effectively expand and continue their business. In the critical customer mining model, customers are clustered into critical and non-critical customers and the features of critical customers are extracted. By application of critical customer mining model, the TSPs can efficiently target the critical and potential customers. Furthermore, based on the profiling technique, the PDA (Personal Digital Assistant, PDA) ready knowledge and sales suggestions that fits user requirements is imported to the PDA through the personal computer. In addition to the proposed methodologies, a Web-based system, namely business information management system, is developed to evaluate the feasibility of the proposed models and techniques.
    As a whole, by application of the technology mining, customer mining and profiling models, effective R&D and sales suggestions (i.e. technology development and potential customer suggestions) and intelligent mobile KM (Knowledge Management, KM) technique can be provided to the TSPs for accurate business promotion.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 XI 第一章、研究背景 1 1.1研究動機與目的 1 1.1.1技術與諮詢服務供應者之營運背景 2 1.1.2技術與諮詢服務供應者之營運問題 4 1.1.3研究課題 6 1.2研究步驟 7 1.3研究主題 10 1.3.1技術與諮詢服務供應者技術研發與客戶搜尋之探索模式 10 1.3.2客戶搜尋輔助模式─業務人員特質探勘模式 13 第二章、文獻回顧 15 2.1研究定位 15 2.2技術開發與諮詢服務供應者之運作 17 2.2.1技術提供單位之運作模式 17 2.2.2評選重點客戶 19 2.2.3技術發展及需求趨勢分析 21 2.3個人特質探勘 23 2.3.1資料探勘技術 23 2.3.2探勘資料內容 24 2.3.3資料探勘應用之產業 28 2.4專屬知識/資訊發佈及提供 30 2.5 PDA技術發展與應用趨勢 33 2.6小結 36 第三章、技術與諮詢服務供應者業務建議與個人化知識推論模式 38 3.1技術/客戶探勘模式 38 3.1.1資料模式之建立 42 3.1.2技術研發方向探索 44 3.1.3重點/潛在客戶分析 55 3.2 PDA使用者特質探勘模式 64 3.2.1記事資料探勘 67 3.2.2行事曆資料運用 72 3.2.3聯絡人關聯程度之推導 77 3.3小結 80 第四章、系統架構與規劃 82 4.1業務資訊管理系統核心架構 82 4.2系統功能架構 83 4.3資料模式定義 87 4.4系統功能流程 91 4.4.1系統功能操作流程 92 4.4.2系統資料流程 104 4.5系統開發工具 105 第五章、系統實作與案例驗證 108 5.1系統應用情境說明 108 5.2系統中心案例驗證 120 5.2.1契約資料之彙整 121 5.2.2既有客戶資料之彙整 122 5.2.3案例驗證之驗證週期規劃 122 5.2.4技術研發方向探索之驗證說明 123 5.2.5重點/潛在客戶搜尋之驗證說明 139 5.3專屬資訊發佈之驗證說明 151 5.3.1使用者類別偏好推論之績效評估與分析 151 5.3.2聯絡者分析機制之績效評估與分析 164 5.4小結 169 第六章、結論與未來發展 173 參考文獻 177 附錄A、系統功能操作說明 186 附錄B、各使用者所分配之測試資料 224

    1. Ananthanarayana, V. S., Murty, N. M. and Subramanian, D. K., 2003, “Tree structure for efficient data mining using rough sets,” Pattern Recognition Letters, Vol. 24, No. 6, pp. 851-862.
    2. Arnold, White, and Durkee, 1990, 100 Factors Involved in Pricing The Technology License, Houston.
    3. Asuka-Zhang, S., 1999, “Transfer of environmentally sound technologies from Japan to China,” Environmental Impact Assessment Review, Vol. 19, No. 5, pp. 553-567.
    4. Berry, M. J. A. and Linoff, G., 2000, Mastering Data Mining: The Art and Science of Customer Relationship Management, John Wiley & Sons, Inc.
    5. Bessant, J. and Rush, H., 1995, “Building bridges for innovation: The role of consultants in technology transfer,” Research Policy, Vol. 24, No. 1, pp. 97-114.
    6. Blatterg, R. C. and Deighton, J., 1996, “Manage marketing by the consumer equity test,” Harvard Business Review, Vol. 74, pp. 136-44.
    7. Bozeman, B., 2000, “Technology transfer and public policy: A review of research and theory,” Research Policy, Vol. 29, No. 4-5, pp. 627-655.
    8. Breault, J. L., Goodall, C. R. and Fos, P. J., 2002, “Data mining a diabetic data warehouse,” Artificial Intelligence in Medicine, Vol. 26, No.1, pp. 37-54.
    9. Buratti, N. and Penco, L., 2001, “Assisted technology transfer to SMEs: Lessons from an exemplary case,” Technovation, Vol. 21, No. 1, pp. 35-43.
    10. Byun, H. Y. and Wang, Y., 1995, “Technology transfer and multinational corporations: The case of South Korea,” Journal of Asian Economics, Vol. 6, No. 2, pp. 201-216.
    11. Chae, Y. M., Ho, S. H., Cho, K. W., Lee, D. H. and Ji, S. H., 2001, “Data mining approach to policy analysis in a health insurance domain,” International Journal of Medical Informatics, Vol. 62, No. 2, pp. 103-111.
    12. Chen, P. M. and Kuo, F. C., 2000, “An information retrieval system based on a user profile,” Journal of Systems and Software, Vol. 54, No. 1, pp. 3-8.
    13. Chiang, I. J. and Lin, T. Y., 2000, “Using rough sets to build-up Web-based one to one customer services,” Computer Software and Applications Conference, COMPSAC 2000. The 24th Annual International, 25-27 Oct., pp.463-464.
    14. Chuna, S. H. and Kim, S. H., 2004, “Data mining for financial prediction and trading: Application to single and multiple markets,” Expert Systems with Applications, Vol. 26, pp. 131-139.
    15. Clark, J. and Guy, K., 1998, “Innovation and competitiveness: A review,” Technology Analysis & Strategic Management, Vol. 10, No. 3, pp. 363-395.
    16. Cohen, W. M. and Levinthal, D. A., 1990, “Absorptive capacity: A new perspective on learning and innovation,” Administrative Science Quarterly, Vol. 35, pp. 128-152.
    17. Coppola, M. and Vanneschi, M., 2002, “High-performance data mining with skeleton-based structured parallel programming,” Parallel Computing, Vol. 28, No. 5, pp. 793-813.
    18. Craven, M. W. and Shavlik, J. W., 1997, “Using neural networks for data mining,” Future Generation Computer Systems, Vol. 13, No. 2-3, pp. 211-229.
    19. Cumby, C., Fano, A., Ghani, R. and Krema, M., 2004, “Predicting customer shopping lists from point-of-sale purchase data,” Proceedings of the 2004 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 402-409.
    20. Davies, N., Cheverst, K., Friday, A. and Mitchell, K., 2002, “Future wireless applications for a networked city: Services for visitors and residents,” IEEE Wireless Communications, Vol. 2, pp. 11-19.
    21. Davis, G. A., 2001, “The credibility of a threat to nationalize,” Journal of Environmental Economics and Management, Vol. 42, pp. 119-139.
    22. De Castro, J. O. and Schulze, W. S., 1995 “The transfer of technology to less developed countries: A model from the perspective of the technology recipient,” Journal of High Technology Management Research, Vol. 6, No. 1, pp. 113-126.
    23. De Meyer, A., 2001, “Technology transfer into China: Preparing for a new era,” European Management Journal, Vol. 19, No. 2, pp. 140-144.
    24. Dhar, V., 1998, “Data mining in financial: Using counterfactuals to generate knowledge from organizational information systems,” Information Systems, Vol. 23 No.7 pp. 423-437.
    25. Eide, A., Johansson, R., Lindblad, T. and Lindsey, C. S., 1997, “Data mining and neural networks for knowledge discovery,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 389, No. 1, pp. 251-254.
    26. Elske, A., Anke, B., Bernd, B. and Reinhold, H., 2000, “Mobile information and communication tools in the hospital,” International Journal of Medical Informatics, Vol. 57, No. 1, pp. 21-40.
    27. Fujisue, K., 1998, “Promotion of academia-industry cooperation in Japan-establishing the law of promoting technology transfer from university to industry in Japan,” Technovation, Vol. 18, No. 6-7, pp. 371-381.
    28. Ganti, V. and Gehrke, J., 2002, “A framework for measuring differences in data characteristics,” Journal of Computer and System Sciences, Vol. 64, pp. 542-578.
    29. Garbarino, E. and Johnson, M. S., 1999, “The different roles of satisfaction, trust and commitment in customer relationships,” Journal of Marketing, Vol. 59, pp. 70-87.
    30. Giudici, P. and Passerone, G., 2002, “Data mining of association structures to model consumer behaviour,” Computational Statistics and Data Analysis, Vol. 38, No. 4, pp. 533-541.
    31. HiB2B, 2003, http://www.hib2b.com.tw/example/finance02.php.
    32. Hollier, R. H., 1963, “The layout of multi-product lines,” International Journal of Production Research, Vol. 2, pp. 47-57.
    33. Honga, T. P., Lin, K. Y. and Wang, S. L., 2003, “Fuzzy data mining for interesting generalized association rules,” Fuzzy Sets and Systems, Vol. 138, pp. 255-269.
    34. Hughes, S., 1994, “Times higher education supplement,” Old Softies, Vol. 1155, No. 7, pp. 18-22.
    35. Hui, S. C. and Jha, G., 2000, “Data mining for customer service support,” Information & Management, Vol. 38 pp. 1-13.
    36. Jenamani, M., Mohapatra, P. K. J. and Ghose, S., 2003, “A stochastic model of e-customer behavior,” Electronic Commerce Research and Applications, Vol. 2, No. 1, pp. 81-94.
    37. Josephson, S. and Holmes, M. E., 2004, “Age differences in visual search for information on web pages,” Proceedings of the Eye Tracking Research and Applications, pp. 62.
    38. Kamimura, R. T., Bicciato, S., Shimizu, H., Alford, J. and Stephanopoulos, G., 2000, “Mining of biological data II: Assessing data structure and class homogeneity by cluster analysis,” Metabolic Engineering, Vol. 2, No. 3, pp. 228-238.
    39. Kamrani, A., Rong, W. and Gonzalez, R., 2001, “A genetic algorithm methodology for data mining and intelligent knowledge acquisition,” Computers and Industrial Engineering, Vol. 40, No. 4, pp. 361-377.
    40. Khanna, T., Gulati, R. and Nohira, N., 1998, “The dynamics of learning alliances: Competition, cooperation, and relative scope,” Strategic Management Journal, Vol. 19, pp. 102-116.
    41. Kim, J. K., Cho, Y. H., Kim, W. J., Kim, J. R. and Suh, J. H., 2002, “A personalized recommendation procedure for internet shopping support,” Electronic Commerce Research and Applications, Vol. 1, No. 3-4, pp. 301-313.
    42. Kim, M. J., 2003, “The discovery of experts’ decision rules from qualitative bankruptcy data using genetic algorithms,” Expert Systems with Applications, Vol. 25, pp. 637-646.
    43. King, D. R. and Nowack, M. L., 2003, “The impact of government policy on technology transfer: An aircraft industry case study,” Journal of Engineering and Technology Management, Vol. 20, No. 4, pp. 303-318.
    44. Kingsley, G., Bozeman, B. and Coker, K., 1996, “Technology transfer and absorption: An ‘R&D value-mapping’ approach to evaluation,” Research Policy, Vol. 25, No. 6, pp. 967-995.
    45. Lambe, C. J. and Spekman, E. R., 1997, “Alliances, external technology acquisition, and discontinuous technological change,” Journal Product Innovation Manage, Vol. 14, pp. 102-116.
    46. Lee, W. P. and Tsai, T. C, 2003, “An interactive agent-based system for concept-based web search,” Expert Systems with Applications, Vol. 24, No. 4, pp. 365-373.
    47. Lee, W. P. and Yang, T. H., 2003, “Personalizing information appliances: A multi-agent framework for TV program recommendations,” Expert Systems with Applications, Vol. 25, No. 3, pp. 331-341.
    48. Lee, W. P., Liu, C. H. and Lu, C. C., 2002, “Intelligent agent-based systems for personalized recommendations in Internet commerce,” Expert Systems with Applications, Vol. 22, No. 4, pp. 275-284.
    49. Leigh, W., Modani, N., Purvis, R. and Roberts, T., 2002, “Stock market trading rule discovery using technical charting heuristics,” Expert System with Applications, Vol. 23, pp. 155-159.
    50. Leu, S. S., Chen, C. N. and Chang, S. L., 2001, “Data mining for tunnel support stability: Neural network approach,” Automation in Construction, Vol. 10, No. 4, pp. 429-441.
    51. Lin, B. S., Jan, G. J. and Chong, F. C., 2000, “An emergency real-time biomedical signal monitor,” The International Union for Physical and Engineering Sciences in Medicine, pp. 50-58.
    52. Liu, H. and Jiang, Y., 2001, “Technology transfer from higher education institutions to industry in China: Nature and implications,” Technovation, Vol. 21, No. 3, pp. 175-188.
    53. Macharzina, K. and Brodel, D., 1996, “International encyclopedia of business and management-strategy and technological development,” Routledge, Vol. 5, pp. 4691-4702.
    54. Macus, C., 1998, “A practical yet meaningful approach to customer segmentation,” Journal of Consumer Marketing, Vol. 5, pp. 494-504.
    55. Mamata, J., Pratap, K. J. and Mohapatra, S. G., 2003, “A stochastic model of e-customer behavior,” Electronic Commerce Research and Applications, Vol. 2 pp. 81-94.
    56. Mansfield, E., 1975, “International technology transfer: Forms, resources, requirement and policies,” American Economic Association, Vol. 65, No. 2, pp. 372-376.
    57. Manuel, M. L. and Guillermo, R. O., 1998, “Obtaining expert system rules using data mining tools from a power generation database,” Expert Systems with Applications, Vol. 14, No. 1, pp. 37-42.
    58. Motta, C. L. R. and Borges, M. R. S., 2000, “A cooperative approach for information recommendation and filtering,” The Sixth International Workshop on Groupware, pp. 42-49.
    59. Nagle, T. T. and Holden, R. K., 1995, The Strategy and Tactics of Pricing, 2nd Edition, Prentice-Hall, Inc.
    60. Ng’Ambi, D., 2002, “Pre-empting user questions through anticipation: Data mining FAQ lists,” Computer Scientists and Information Technologists, pp. 101-109.
    61. Nikravesh, M. and Aminzadeh, F., 2001, “Mining and fusion of petroleum data with fuzzy logic and neural network agents,” Journal of Petroleum Science and Engineering, Vol. 29, pp. 221-238.
    62. Radosevic, S., 1999, “International technology transfer policy: From ‘contract bargaining’ to ‘sourcing’,” Technovation, Vol. 19, No. 6-7, pp. 433-444.
    63. Rasmussen, D. and Yager, R. R., 1997, “Summary SQL-A fuzzy tool for data mining,” Intelligent Data Analysis, Vol. 1, pp. 49-58.
    64. Reponen, J., Ilkko, E., Jyrkinen, L., Tervonen, O., Niinimaki, J., Karhula, V. and Koivula, A., 2000, “Initial experience with a wireless personal digital assistant as a teleradiology terminal for reporting emergency computerized tomography scans,” Journal of Telemedicine and Telecare, Vol. 6, pp. 45-49.
    65. Ruland, C. M., 2000, Clinicians’ Use of a Palm-Top Base System to Elicit Patient Preferences at the Bedside: A Feasible Technique to Improve Patient Outcomes, Proc. Amia Symp, pp. 739-743.
    66. Rusmevichientong, P., Zhu, S. and Selinger, D., 2004, “Identifying early buyers from purchase data,” Proceedings of the 2004 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 671-676.
    67. Rygielski, C., Wang, J. C. and Yen, D. C., 2002, “Data mining techniques for customer relationship management,” Technology in Society, Vol. 24, No. 4, pp. 483-502.
    68. Sforna, M., 2000, “Data mining in a power company customer database,” Electric Power Systems Research, Vol.55 pp. 201-209.
    69. Sherden, W. A., 1994, The Art & Science of Becoming, New York: Amacom Press.
    70. Sjolinder, M., Hook, K. and Nilsson, L. G., 2000, “Age difference in the use of an on-line grocery shop: Implications for design,” CHI '00 Extended Abstracts on Human Factors in Computing Systems, pp. 135-136.
    71. Slyke, C. V., Comunale, C. L. and Belanger, F., 2002, “Gender differences in perceptions of Web-based shopping,” Source Communications of the ACM Archive, Vol. 45, No. 8, pp. 82-86.
    72. Sorensen, K. and Janssens, G. K., 2003, “Data mining with genetic algorithms on binary trees,” European Journal of Operational Research, Vol. 151, No. 2, pp. 253-264.
    73. Sung, H. H. and Sang, C. P., 1998, “Application of data mining tools to hotel data mart on the Intranet for database marketing,” Expert Systems with Applications, Vol. 15 pp. 1-31.
    74. Tan, A. H. and Teo, C., 1998, “Learning user profiles for personalized information dissemination,” Proceedings, IEEE International Joint Conference on Neural Networks, Vol. 1, pp. 183-188.
    75. Tan, R. R., 1995, “Establishing technology transfer infrastructure as a strategy for promoting manufacturing automation in Taiwan,” Technovation, Vol. 15, No. 7, pp. 407-421.
    76. The Students of Technology Transfer Design Project Team, 1997, “Technology transfer - bridging space and society,” Acta Astronautica, Vol. 41, No. 4-10, pp. 493-505.
    77. Tucker, A. D., Robins, J. B. and McPhee, D. P., 1998, “Adopting turtle excluder devices in Australia and the United States: What are the differences in technology transfer, promotion, and acceptance,” Oceanographic Literature Review, Vol. 45, No. 6, pp. 1051.
    78. Tylecote, A., 1996, “International encyclopedia of business and management-innovation and technological change,” Routledge, Vol. 3, pp. 2156-2173.
    79. Wei, C. P. and Chiu, I. T., 2002, “Turning telecommunications call details to churn prediction: A data mining approach,” Expert Systems with Applications, Vol. 23 pp. 103-112.
    80. Yuan, S. T. and Cheng, C., 2004, “Ontology-based personalized couple clustering for heterogeneous product recommendation in mobile marketing,” Expert Systems with Applications, Vol. 26, No. 4, pp. 461-476.
    81. Yuan, S. T. and Tsao, Y. W., 2003, “A recommendation mechanism for contextualized mobile advertising,” Expert Systems with Applications, Vol. 24, No. 4, pp. 399-414.
    82. 行政院國家科學委員會,2004,中華民國科學技術統計要覽,台北:科學技術資料中心。
    83. 余坤舟,2002,「建構一個具空間定位能力之行動式資訊服務系統」,碩士論文(指導教授:游坤明),中華大學資訊工程學系。
    84. 姜伶穎,「網際網路用戶行為及網路廣告效果評量方式」,電子化企業經理人報告,第16期,民國89年12月,頁34-37。
    85. 張昌財,2004,科技管理導論,台北:全華科技圖書。
    86. 張鈺珮,2003,「以資料探勘技術進行電子行銷區隔基礎研究」,碩士論文(指導教授:陳亭羽),長庚大學企業管理所。
    87. 郭靜宜,1990,「資料探勘之因素分析」,碩士論文(指導教授:王小璠),清華大學工業工程與工程管理學系。
    88. 陳文杰,2001,「利用掌上型電腦發展數值製圖的調繪補測與檢核更新系統」,碩士論文(指導教授:郭英俊),成功大學測量工程所。
    89. 陳麗君,2002,「應用資料探勘技術於信用卡黃金級客戶之顧客關係管理」,碩士論文(指導教授:蔡介元),元智大學工業工程與管理系。
    90. 彭慧雯,2000,「建構信用卡資料挖礦架構及其實證研究」,碩士論文(指導教授:吳忠敏、張光旭),台北科技大學生產系統工程與管理學系。
    91. 馮震宇,1995,「技術移轉之類型及其比較」,工業財產權與標準,第二十三期,頁94-108。
    92. 劉奕芳,2002,「技術交易中介機構發展之研究」,碩士論文(指導教授:劉尚志)交通大學科技管理所。
    93. 劉瑞圖,1994,「科技管理(八)科技企業的技術移轉」,工業簡訊,第二十八期,頁34-45。
    94. 鄭丞君,2003,「資料挖掘技術在旅遊行銷之應用」,碩士論文(指導教授:謝昆霖),南華大學資訊管理所。
    95. 謝宜錚,2002,「適境化行為模式探勘於行動車輛資訊服務之應用」,碩士論文(指導教授:苑守慈),輔仁大學資訊管理系。
    96. 蘇士豪,2001,「主題聊天室之主動行銷架構」,碩士論文(指導教授:陶幼慧),義守大學資訊工程系。
    97. 蘇勝宏,2001,「從銀行信用卡客戶中探索跨企業潛在客戶之研究」,碩士論文(指導教授:翁頌舜),輔仁大學資訊管理系。

    參考專利
    1. Cullen, A. A., Shaw, S. A. and Zilberman, L., 2005, Method of and System for Consultant Re-Seller Business Information Transfer, US Patent, Pending (Patent No.: 20050262008).
    2. Goldman, D. P. and Seaton, T. L., 2005, Systems and Methods for Data Mining via an On-Line, Interactive Game, US Patent, Pending (Patent No.: 20050143174).
    3. Lee, Y. P., 2002, Computer Implemented Customer Value Model in Airline Industry, US Patent, Pending (Assignee: NCR Corporation, Patent No.: 20020138332).
    4. Reddy and Narender, 2005, Medical Data Collection for PDA, US Patent, Pending (Patent No.: 20070083394).
    5. 王中平,2007,互惠式郵件廣告,中華民國專利。(申請案號:094126006)。
    6. 安德魯、厄尼斯特及法羅,2003,在現實社會中對購物代理人進行基於位置之過濾之系統、方法和物品,中華民國專利。(專利代理人:周良謀;申請案號:089103627)。
    7. 李忠一、葉建發及姜志強,2005,軟體用戶行為模式分析系統及方法,中華民國專利。(專利單位:鴻海精密工業股份有限公司;申請案號:092136185)。
    8. 張元勳、李建億、曾新穆、吳博民、陳志及及黃瀝萱,2006,以資料探勘方法應用於銀行信用評分系統,中華民國專利。(專利單位:探宇科技股份有限公司;申請案號:093131198)。
    9. 陳永強,2002,個人化之主題項目排名之推薦方法,中華民國專利。(專利代理人:陳長文;申請案號:089121151)。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE