簡易檢索 / 詳目顯示

研究生: 林俊仲
Chun-Chung Lin
論文名稱: 在多路徑下使用峰度最大化之盲蔽波束成型演算法於正交分頻多工系統
A Blind Beamforming Algorithm Using Kurtosis Maximization for OFDM Systems in Multipath
指導教授: 祁忠勇
Chong-Yung Chi
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 66
中文關鍵詞: 盲蔽波束成型演算法正交分頻多工陣列天線快速峰度最大化演算法盲蔽最大比值合併演算法同頻道干擾
外文關鍵詞: Blind Beamforming Algorithm, Orthogonal Frequency Division Multiplexing (OFDM), Antenna Arrays, Fast Kurtosis Maximization Algorithm (FKMA), Blind Maximum Ratio Combining (BMRC) Algorithm, Co-channel Interference (CCI)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 祁和陳提出一個具有高運算效率的快速峰度最大化演算法(Fast Kurtosis Maximization Algorithm, FKMA),並將其應用於盲蔽波束成型(Blind Beamforming)、盲蔽最大比值合併(Blind Maximum Ratio Combining)及盲蔽訊號分離(Blind Source Separation)或獨立成份分析(Independent Component Analysis)。而該演算法必須假設單一訊號源本身為非高斯獨立相同分佈程序(Non-Gaussian Independent Identically Distributed Process)且不同的訊號源之間在統計上是互相獨立的。

    針對正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM)結合陣列天線(Antenna Arrays)之上傳模式系統的前置快速傅立葉轉換(Pre-FFT)和後置快速傅立葉轉換(Post-FFT)波束成型接收器(Beamforming Receivers),我們各自建立一個離散時間多重輸入多重輸出(Multi-input Multi-output)訊號模型。對於前者而言,因爲原始訊號源在傳送端經過反快速傅立葉轉換的處理,使得接收到之時域(Time-domain)訊號源在統計上趨近高斯分佈,進而導致快速峰度最大化演算法的效能嚴重地衰減。而對於後者而言,因為在接收端的每一根天線上會先經過快速傅立葉轉換的處理,因此,等效頻域(Frequency-domain)訊號源為非高斯獨立非相同分佈程序,且在多路徑傳輸的環境下,不同的訊號源之間在統計上並非互相獨立。

    一般而言,在演算法(例如:快速峰度最大化演算法)的分析上,我們利用統計平均(Ensemble Average)去估測訊號的統計量。然而,在後置快速傅立葉轉換波束成型接收器中,我們發現在時間平均(Time Average)的計算下,所有的等效頻域訊號源彼此都是互相正交的。因此,在多路徑傳輸的環境下,我們以時間平均分析快速峰度最大化演算法並將其應用於後置快速傅立葉轉換波束成型接收器中,此外,我們也進一步地提出一個盲蔽波束成型演算法(Blind Beamforming Algorithm, BBA)。最後,我們呈現一些模擬結果以驗證所提出之盲蔽波束成型演算法的效能。


    Chi and Chen proposed a fast kurtosis maximization algorithm (FKMA) with computationally efficient for blind beamforming, blind maximum ratio combining, and blind source separation or independent component analysis. The FKMA assumes that each source signal is non-Gaussian independent identically distributed process and statistically independent with each other.

    In uplink orthogonal frequency division multiplexing (OFDM) systems with antenna arrays, we establish a discrete-time multi-input multi-output signal model for pre-FFT and post-FFT beamforming receiver, respectively. For the former, due to the IFFT process at the transmitter, the received time-domain source signals are approximate Gaussian distributed statistically such that the performance of the FKMA degrades seriously. For the latter, due to the FFT process at each antenna of the receiver, the equivalent frequency-domain source signals are non-Gaussian independent non-identically distributed and mutually dependent statistically in multipath.

    In general, we utilize ensemble average to estimate the source statistic for analyses of an algorithm such as FKMA. However, in the post-FFT beamforming receiver, we observe that the equivalent frequency-domain source signals are mutually orthogonal using the calculation of time average. Therefore, we analyse the FKMA by time average and apply the FKMA to the post-FFT beamforming receiver in multipath; and further, we propose a blind beamforming algorithm (BBA). Finally, some simulation results are presented to support the efficacy of the proposed BBA.

    中文摘要 英文摘要 誌謝 目錄 第一章 簡介 第二章 離散時間訊號模型 2-1 前置快速傅立葉轉換波束成型接收器 2-2 後置快速傅立葉轉換波束成型接收器 第三章 快速峰度最大化演算法 第四章 分析且應用快速峰度最大化演算法於正交分頻多工結合 陣列天線之上傳模式系統 第五章 盲蔽波束成型演算法 5-1 初始權值向量給定程序 5-2 盲蔽最大比值合併演算法 5-3 盲蔽波束成型演算法總結 第六章 模擬結果 第七章 結論 附錄A 中央極限定理 附錄B 證明(4-1)式是平均值為0且峰度值為-2的廣義穩定隨機 序列 附錄C (4-7)、(4-9)和(4-10)式的證明 附錄D (4-17)、(4-18)和(4-19)式的證明 附錄E 表(4-4)和表(4-7)中目的函式極大值的證明 附錄F 定理1的證明 參考文獻

    [1] R. V. Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston/London: Artech House, 1999.

    [2] J. Heiskala and J. Terry, OFDM Wireless LANs: A Theoretical and Practical Guide. Indiana: SAMS, 2001.

    [3] J. C. Liberti, Jr., and T. S. Rappaport, Smart Antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications. New Jersey: Prentice Hall, 1999.

    [4] C. K. Kim, K. Lee, and Y. S. Cho, “Adaptive beamforming algorithm for OFDM systems with antenna arrays,” IEEE Trans. Consumer Electronics, vol. 46, pp. 1052-1058, Nov. 2000.

    [5] V. Venkataraman, R. E. Cagley, and J. J. Shynk, “Adaptive beamforming for interference rejection in an OFDM system,” Proc. IEEE Asilomar Conference on Signals, Systems and Computers, vol. 1, Pacific Grove, CA, Nov. 9-12, 2003, pp. 507-511.

    [6] C.-Y. Chi and C.-Y. Chen, “Blind beamforming and maximum ratio combining by kurtosis maximization for source separation in multipath,” Proc. IEEE Workshop on Signal Processing Advances in Wireless Communications, Taoyuan, Taiwan, Mar. 20-23, 2001, pp. 243-246.

    [7] C.-Y. Chi, C.-H. Chen, and C.-Y. Chen, “Blind MAI and ISI suppression for DS/CDMA systems using HOS-based inverse filter criteria,” IEEE Trans. Signal Processing, vol. 50, pp. 1368-1381, June 2002.

    [8] C.-Y. Chi, C.-J. Chen, F.-Y. Wang, C.-Y. Chen, and C.-H. Peng, “Turbo source separation algorithm using HOS based inverse filter criteria,” Proc. IEEE International Symposium on Signal Processing and Information Technology, Darmstadt, Germany, Dec. 14-17, 2003, pp. 498-501.

    [9] H. Matsuoka and H Shoki, “Comparison of pre-FFT and post-FFT processing adaptive arrays for OFDM systems in the presence of co-channel interference,” Proc. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 2, Beijing, China, Sept. 7-10, 2003, pp. 1603-1607.

    [10] J. M. Mendel, “Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications,” Proceedings of the IEEE, vol. 79, pp. 278-305, Mar. 1991.

    [11] C. L. Nikias and J. M. Mendel, “Signal processing with higher-order spectra,” IEEE Signal Processing Mag., vol. 10, pp. 10-37, July 1993.

    [12] C. L. Nikias and A. P. Petropulu, Higher-order Spectra Analysis: A Nonlinear
    Signal Processing Framework. Englewood Cliffs, NJ: Prentice Hall, 1993.

    [13] P. A. Delaney and D. O. Walsh, “A bibliography of higher-order spectra and cumulants,” IEEE Signal Processing Mag., vol. 11, pp. 61-70, July 1994.

    [14] Z. Ding and T. Nguyen, “Stationary points of a kurtosis maximization algorithm for blind signal separation and antenna beamforming,” IEEE Trans. Signal Processing, vol. 48, pp. 1587-1596, June 2000.

    [15] K. L. Yeung and S. F. Yau, “A super-exponential algorithm for blind deconvolution of MIMO system,” IEEE Trans. Signal Processing, vol. 4, pp. 2517-2520, June 1997.

    [16] Y. Inouye and K. Tanebe, “Super-exponential algorithms for multichannel blind deconvolution,” IEEE Trans. Signal Processing, vol. 48, pp. 881-888, Mar. 2000.

    [17] C.-Y. Chi and C.-H. Chen, “Cumulant-based inverse filter criteria for MIMO blind deconvolution: Properties, algorithms, and application to DS/CDMA systems in multipath,” IEEE Trans. Signal Processing, vol. 49, pp. 1282-1299, July 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE