簡易檢索 / 詳目顯示

研究生: 吳宇瀚
Wu, Yu-Han
論文名稱: 利用同步輻射分析技術研究添加劑對低膨脹Li2O-Al2O3-SiO2玻璃陶瓷的顯微結構發展之影響
Effect of Various Dopants on the Microstructure Evolution of Low Thermal Expansion Li2O-Al2O3-SiO2 Glass-ceramic Materials Studied by Synchrotron Radiation Techniques
指導教授: 李志浩
Lee, Chih-Hao
口試委員: 林健正
李志甫
李信義
曾俊元
簡朝和
李志浩
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 193
中文關鍵詞: 鋰鋁矽酸鹽玻璃陶瓷X光吸收光譜術X光粉末繞射顯微結構添加劑機械強度
外文關鍵詞: lithium aluminosilicate, glass ceramic, X-ray absorption spectroscopy, X-ray powder diffraction, microstructure, additives, mechanical strength
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究探討添加B2O3, P2O5, ZnO, MgF2 and Fe2O3在商業化配方的低膨脹鋰鋁矽酸鹽玻璃陶瓷中,使該材料顯微組織的發展於不同熱處理條件下所呈現的變化。可以觀察到不同種類的添加劑會使顯微組織與電子結構的發展產生不盡相同的變化。試樣由一般的玻璃塊材淬冷法製備並經1階段或2階段熱處理而析出晶相。材料的顯微結構發展經由X光繞射、X光近吸收邊結構、紅外光吸收光譜術等方法來鑑別。主要結果條列如下:
    (1)玻璃失透過程中,鈦離子(成核劑)的配位數由4與5轉變為6。
    (2)在具商業配方的高度結晶試樣中,鋅離子傾向位於類似尖晶石結構的周遭環境當中;在簡化的配方當中,鋅離子較常處於類似纖鋅礦的結構中。
    (3)在低添加濃度時 (~<0.2%),大部分鐵離子於結晶化過程處於較無序的環境;在高添加濃度時,部分鐵離子會進入較有序的結構中,例如:主晶相的鋰位置。
    (4)這些添加劑通常使得試樣的結晶化溫度以及主晶相相變溫度降低,然而添加較高含量氧化鐵時(~>0.6%)例外。
    (5)對於添加氧化磷、氟化鎂與氧化鐵的試樣,其顯微組織的均勻性因為添加濃度的提高而降低。因此,這些試樣的抗折強度也隨之下降。
    添加劑造成的玻璃黏度、化學劑量比、以及陽離子力場強度等變化被認為是可能造成上述現象的機構。


    The effects of additives, such as B2O3, P2O5, ZnO, MgF2 and Fe2O3, on the microstructure evolution under different thermal treatment conditions in a low thermal expansion lithium aluminosilicate glass-ceramic material with commercial-like compositions are studied. It can be found that the effects on micro- and electronic structural development accompanied with different types of additives are varied. Samples are prepared by the standard bulk quench method and heated by one or two-step thermal programs to achieve vitreous to crystalline phase transition. The analytical work is emphasized on the results obtained from these techniques: X-ray powder diffraction, X-ray absorption near edge structure and IR absorption spectroscopy. A few results can be summarized as follows:
    (1)During the devitrification process, the coordination number of Ti (the nucleation agent) changes from 4 and 5 to 6;
    (2)For highly crystalline samples with commercial-like composition, Zn ions tend to have spinel-like local environments; while in a simplified composition, Zn ions favor hexagonal ZnO-like surroundings;
    (3)At low doping level (~<0.2%), most of Fe ions remain in disorder states during devitrification process; at high doping level(~>0.6%), some of these ions migrate into order environments, such as the Li site of the main crystalline phase;
    (4)The crystallization and main phase transformation temperatures are often lowered for samples with these additives; while these phase change temperatures are increased for samples with high Fe2O3 doping concentration (~>0.6%);
    (5)The microstructural uniformity becomes irregular as the doping level of P2O5, MgF2 or Fe2O3 is increased. As a result, the flexural strengths of these samples are decreased.
    The possible mechanisms of changes by the additives in viscosity, stoichiometry and cation field strength are proposed to be responsible for the above phenomenon.

    摘要 i Abstract ii Acknowledgements iii Table of contents iv Table index ix Figure index x Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Main objective 3 References of Chapter 1 4 Chapter 2 Literature review 5 2.1 Glass 5 2.2 Glass-ceramic materials 6 2.3 Overview of LAS glass-ceramic 7 2.4 Effect of transition-elements doped in a LAS glass-ceramic 9 2.5 Summary of effects of various additives: 10 References of Chapter 2 12 Chapter 3 Experimental 19 3.1 Sample preparation 19 3.2 Characterization 20 References of Chapter 3 26 Chapter 4 Results and discussion 29 4.1 Effects of B2O3 and P2O5 doping on the microstructure evolution and mechanical strength in a LAS glass-ceramic material with TiO2 and ZrO2 31 4.1.1 Introduction of LAS glass-ceramics containing B2O3 or P2O5 32 4.1.2 Experimental procedures of LAS glass-ceramics containing B2O3 or P2O5 33 4.1.2.1 Sample preparation and mechanical property measurement of LAS glass-ceramics containing B2O3 or P2O5 33 4.1.2.2 Sample characterization of LAS glass-ceramics containing B2O3 or P2O5 34 4.1.3 Results and discussion of LAS glass-ceramics containing B2O3 or P2O5 35 4.1.3.1 Composition and devitrification of LAS glass-ceramics containing B2O3 and P2O5 35 4.1.3.2 Microstructure development of LAS glass-ceramics containing B2O3 or P2O5 36 4.1.3.3 XANES spectral features of Ti and Zr K-edges of LAS glass-ceramics containing B2O3 or P2O5 39 4.1.3.4 Mechanical strength of LAS glass-ceramics containing B2O3 or P2O5 44 4.1.4 Summary of LAS glass-ceramics containing B2O3 or P2O5 46 References of Sec. 4.1 48 4.2 Study of relationships among synthesis, microstructure and mechanical properties of LAS glass-ceramics containing ZnO or MgF2 by synchrotron XRD and XANES 61 4.2.1 Introduction to ZnO or MgF2-bearing LAS glass-ceramics 62 4.2.2 Experimental of ZnO or MgF2-bearing LAS samples 63 4.2.3 Results and discussion of ZnO or MgF2-bearing LAS samples 64 4.2.3.1 Composition and devitrification of ZnO or MgF2-bearing LAS samples 65 4.2.3.2 Microstructure evolution and morphology of ZnO or MgF2-bearing LAS samples 66 4.2.3.3 XANES spectra of zinc of ZnO-bearing LAS samples 70 4.2.3.4 EXAFS spectra of zinc of ZnO-bearing LAS samples 78 4.2.3.5 Mechanical strength of ZnO or MgF2-bearing LAS samples 79 4.2.4 Summary of ZnO or MgF2-bearing LAS samples 81 References of Sec. 4.2 83 4.3 Characterization of Fe-Doped LAS Glass-ceramic Materials by Synchrotron Radiation Techniques 98 4.3.1 Introduction to the Fe-Doped LAS glass-ceramics 99 4.3.2 Experimental of Fe-Doped LAS glass-ceramic samples 100 4.3.3 Results and discussion of Fe-Doped LAS glass-ceramic samples 101 4.3.3.1 Microstructural evolution by XRD of Fe-Doped LAS glass-ceramics 101 4.3.3.2 Microstructural uniformity of Fe-Doped LAS glass-ceramics 105 4.3.3.3 Local environment change around Fe ions of Fe-Doped LAS glass-ceramics 106 4.3.4 Conclusion of Fe-Doped LAS glass-ceramic samples 109 References of Sec. 4.3 111 Chapter 5 The local environment of Fe and Co ions 120 5.1 EXAFS 120 5.2 PDF method 123 References of Chapter 5: 126 Chapter 6 Conclusions 135 Chapter 7 Future work 137 References of Chapter 7 142 Appendix: previous publications during NTHU (arranged by year) 146 Appendix 1 Neutron depolarization study on the magnetic correlation length of nickel ferrite with different packing densities 148 Appendix 2 The preparation of Zn-ferrite epitaxial thin film from epitaxial Fe3O4:ZnO multilayers by ion beam sputtering deposition 152 Appendix 3 The commissioning of a three dimensional depolarized neutron beamline for studying the magnetic correlation length of a magnetic material at Tsing Hua open‐pool reactor 156 Appendix 4 Effects of B2O3 and P2O5 doping on the microstructure evolution and mechanical strength in a lithium aluminosilicate glass–ceramic material with TiO2 and ZrO2 161 Appendix 5 Error analysis according to the polarization ratio on measuring the magnetic domain of a magnetic material measured by polarized neutrons 172 Appendix 6 The coherent limitation of the specular X-ray and neutron reflectivity on the characterization of the physical vapor deposition thin films 178 Appendix 7 Characterization of Fe-doped lithium aluminosilicate glass-ceramic materials by synchrotron radiation techniques 188 Appendix 8 Study of relationships among synthesis, microstructure and mechanical properties of lithium aluminosilicate glass-ceramics containing ZnO and MgF2 by synchrotron XRD and XANES 193

    References of Chapter 1
    [1.1] S. D. Stookey, US Patent 2 920 970, January, (1960).
    [1.2] Z. Strand, Glass-Ceramic Materials, Glass Science and Technology vol.8, Amsterdam-Oxford, (1986).
    [1.3] P. W. McMillan, Glass-Ceramics, second edition, Academic Press, (1979).
    [1.4] W. Holand, G. Beall, Glass-ceramic Technology, The American Ceramic Society, (2002).
    [1.5] 徐錦志,「微晶玻璃陶瓷」,陶業季刊,第19卷第4期, pp.11-18, (2000).
    References of Chapter 2
    [2.1] F. A. Hummel, “Thermal expansion properties of some synthetic lithia minerals”, Journal of the American Ceramic Society, vol.34, pp.235-239, (1951)
    [2.2] P. G. Debenedetti and Frank H. Stillinger,” Supercooled liquids and the glass transition”, Nature, vol.410, (2001).
    [2.3] J. E. Shelby, “Introduction to Glass Science and Technology”, second edition, The Royal Society of Chemistry, (2005).
    [2.4] S. Bates, G. Zografi, D. Engers, K. Morris, K. Crowley and A. Newman, “Analysis of Amorphous and Nanocrystalline Solids from Their X-Ray Diffraction Patterns”, Pharmaceutical Research, vol.23, pp.2333-2349, (2006).
    [2.5] Z. Strand, Glass-Ceramic Materials, Glass Science and Technology vol.8, Amsterdam-Oxford, (1986).
    [2.6] 吳宇瀚,「建築用玻璃陶瓷的設計」,陶業季刊,第19卷第4期,pp.19-33, (2000).
    [2.7] G. H. Beall, ”Design of Glass-ceramics”, Solid State Science, vol.3, pp.333-354, (1989).
    [2.8] G. H. Beall and David A. Duke, Glass-Ceramic Technology, Glass Science and Technology, vol.1, Academic Press, (1983).
    [2.9] G. H. Beall and Linda R. Pinckeny, “Nanophase glass-ceramics”, Journal of the American Ceramic Society, vol.82, pp. 5-16, (1999).
    [2.10] S. D. Stookey, US Patent 2 920 970, January, (1960).
    [2.11] W. Holand, G. Beall, Glass-ceramic Technology, The American Ceramic Society, (2002).
    [2.12] H. Scheidler and E. Rodek, “Li2O–Al2O3–SiO2 Glass-ceramics”, American Ceramic Society Bulletin, vol.68, pp. 1926-1930, (1989).
    [2.13] G. H. Beall and D. A. Duke, ”Transparent Glass-Ceramics”, Journal of Materials Science, vol.4, pp.340-352, (1969).
    [2.14] J. J. Hsu and R. F. Speyer, “Influences of zirconia and silicon nucleating agents on the devitrification of Li2O.Al2O3.6SiO2 glasses”, Journal of the American Ceramic Society, vol.73, pp.3585-3593, (1990).
    [2.15] H. Bach, Low thermal expansion glass ceramics, Spring-Verlag, (1995).
    [2.16] U. K. Kang, O. S. Dymshits, A. A. Zhilin, T. I. Chuvaeva, G. T. Petrovsky, ” Structural states of Co(II) in β-eucryptite-based glass-ceramics nucleated with ZrO2”, Journal of Non-Crystalline Solids, vol.204, pp.151-157, (1996).
    [2.17] U.K. Kang, A.A. Zhilin, G.T. Petrovsky , O.S. Dymshits and T.I. Chuvaeva,” Structural transformations of nanometer sized crystals in CoO-doped β-eucryptite-based glass-ceramics”, Journal of Non-Crystalline Solids, vol.258, pp.216-222, (1999).
    [2.18] Y. V. Volk, A. M. Malyarevich, K.V. Yumashev, I. P. Alekseeva, O. S. Dymshits, A. V. Shashkin and A. A. Zhilin,” Stimulated emission of Co2+-doped glass ceramics”, Journal of Non-Crystalline Solids, vol.353, pp. 2408-2414, (2007).
    [2.19] H. Yang, X. Guo, “Effect of colouring agent on colourisation and structure of Li2O-Al2O3-SiO2 glass ceramics”, International Journal of Materials and Product Technology, vol.37, pp.280-286, (2010).
    [2.20] M. C. Wang, M. Hsiung, “Properties and crystallization of Li2O–CaO-Al2O3–SiO2 glasses”, Journal of Material Science, vol.8, pp.890-898, (1993).
    [2.21] M. C. Wang, “Crystal growth and characterization of CaO-bearing of Li2O–Al2O3–SiO2–TiO2 glass-ceramic”, Ceramics International, vol.19, pp.223-230, (1993).
    [2.22] M. C. Wang, M. H. Hon, F. S. Yen, “Growth behavior and morphology of lithium-calcium aluminosilicate (LCAS) glasses”, Journal of Crystal Growth, vol.91, pp.155-162, (1988).
    [2.23] S. Knicker, M. R. Tuzzolo, S. Lawhorne, “Sinterable β-spodumene glass-ceramics“, Journal of the American Ceramic Society, vol.72, pp.1873-1879, (1989).
    [2.24] J. J. Shyu, M. T. Chiang, “Sintering and Phase Transformation in B2O3/P2O5-Doped Li2O.Al2O3.4SiO2 Glass-Ceramics”, Journal American Ceramic Society, vol.83, pp.635–39, (2000).
    [2.25] J. J. Shyu, H. H. Lee, “Sintering, crystallization and properties of B2O3/P2O5-Doped Li2O.Al2O3.4SiO2 Glass-Ceramics”, Journal of the American Ceramic Society, vol.78, pp.2161-2167, (1995).
    [2.26] Y. M. Sung, S. A. Dunn, J. A. Koutsky, “The effect of boria and titania addition on the crystallization and sintering behavior of Li2O-Al2O3-4SiO2 glass”, Journal of the European Ceramic Society, vol.14, pp.455-462, (1994).
    [2.27] K. Cheng, ”Carbon effects on crystallization kinetics of Li2O-Al2O3-SiO2 glasses”, Journal of Non-Crystalline Solids , vol.238, pp.152-157, (1998).
    [2.28] J. J. Hsu and R. F. Speyer, “Comparsion of the effects of titania and tantalum oxide nucleating agents on the crystallization of Li2O.Al2O3.6SiO2 glasses”, Journal of the American Ceramic Society, vol.72, pp.2334-2341, (1989).
    [2.29] J. Y Hsu, R. F. Speyer, “Crystallization of Li2O.Al2O3.6SiO2 glasses containing niobium pentoxide as nucleating dopant”, Journal of the American Ceramic Society, vol.74, pp.395-399, (1991).
    [2.30] J. Y. Hsu, R. F. Speyer, “Influences of zirconia and silicon nucleating agents on the devitrification of Li2O.Al2O3.6SiO2 glasses”, Journal of the American Ceramic Society, vol.73, pp.3585-3593, (1990).
    [2.31] J. J. Shyu, C. S. Hwang, “Effect of Y2O3 and La2O3 addition on the crystallization of Li2O.Al2O3.4SiO2 glass-Ceramics”, Journal of Material Science, vol.31, pp.2631-2639, (1996).
    References of Chapter 3
    [3.1] R. L. Snyder, “X-ray diffraction” in “X-ray characterization of materials”, edited by Eric Lifshin,Wiley-vch, (1999).
    [3.2] K. L. Tsang, C.H. Lee, Y.C. Jean, T.E. Dann, J.R. Chen, K.L. D’Amico, T. Oversluzen, “Wiggler x‐ray beamlines at Synchrotron Radiation Research Center”, Review of Scientific Instruments, vol.66, pp.1812-1814, (1995).
    [3.3] J. J. Rehr, R.C.Albers, “Theoretical approach to X-ray absorption fine structure”, Reviews of Modern Physics, vol.72, pp.621-654, (2000).
    [3.4] F. de Groot, A. Kotani, Core Level Spectroscopy of Solids, Taylor & Francis Group, (2008).
    [3.5] W. F. David., “X-ray band spectra and molecular-orbital structure of rutile TiO2”, Physical Review B, vol.5, pp.4219-4226, (1972).
    [3.6] F. M. F de Groot, “Novel techniques and approaches to unravel the nature of X-ray absorption spectra”, AIP Conference Proceedings, vol.882, pp.37-43, (2007).
    [3.7] S. H. Chang, C.H. Chang, J.M. Juang, L.J. Huang, T.F. Lin, C.Y. Liu et al., “Design and commission of a superconducting wiggler X-ray beamline for advanced materials investigation at the National Synchrotron Radiation Research Center”, Chinese Journal of Physics, vol.50, pp.220-228, (2012).
    [3.8] D. L. Pavia, G. M. Lampman, G. S. Kriz, Introduction to spectroscopy, 3 edition, Brooks Cole, (2001).
    References of Sec. 4.1
    [4.1.1] K. Sarah, R. T. Michelle, L. Samuel, “Sinterable β-spodumene glass-ceramics”, Journal of the American Ceramic Society, vol.72, pp.1873-1879, (1989).
    [4.1.2] J. J. Shyu, M. T. Chiang, “Sintering and phase transformation in B2O3/P2O5-doped Li2O.Al2O3.4SiO2 glass-ceramics”, Journal of the American Ceramic Society, vol.83, pp.635–639, (2000).
    [4.1.3] J. J. Shyu, H. H. Lee, “Sintering, crystallization and properties of B2O3/P2O5-doped Li2O.Al2O3.4SiO2 glass-ceramics”, Journal of the American Ceramic Society, vol.78, pp.2161-2167, (1995).
    [4.1.4] Y. M. Sung, A. D. Stanley, A. K. James, “The effect of boria and titania addition on the crystallization and sintering behavior of Li2O-Al2O3-4SiO2 glass”, Journal of the European Ceramic Society, vol.14, pp.455-462, (1994).
    [4.1.5] S. Chakraborty, R. K. Chaturvedi, R. Pyare, “In Vitro characterisation and microstructure of B2O3/P2O5 doped bioactive spodumene glass-ceramics”, Advances in Applied Ceramics, vol.106, pp.216-221, (2007).
    [4.1.6] W. Holand, G. H. Beall, Glass-ceramic Technology, The American Ceramic Society, Westerville, OH, (2002).
    [4.1.7] H. Bach, K. Dieter, Low Thermal Expansion Glass Ceramics, Springer, Berlin, (1995).
    [4.1.8] I. Tanaka, T. Mizoguchi, T. Yamamoto, “XANES and ELNES in ceramic science”, Journal of the American Ceramic Society, vol.88, pp.2013–2029, (2005).
    [4.1.9] M. J. John, S. S. Marie, L. O. Renee, E. S. James, “Effect of heat-treatment temperature on the properties of a lithium aluminosilicate glass”, Journal of the American Ceramic Society, vol.74, pp.92-97, (1991).
    [4.1.10] V. Werner, “Phase separation in glass”, Journal of Non-Crystalline Solids, vol.25, pp.170-214, (1997).
    [4.1.11] V. Maier, G. Müller, “Mechanism of oxide nucleation in lithium aluminosilicate glass-ceramics”, Journal of the American Ceramic Society, vol.70, pp.C-176-178, (1987).
    [4.1.12] G. H. Beall, “Design and properties of glass-ceramics”, Annual Review of Materials Research, vol.22, pp.91-119, (1992).
    [4.1.13] L. Arnault, M. Gerland, A. Rivi Ere, “Microstructural study of two LAS-type glass-ceramics and their parent glass”, Journal of Material Science, vol.35, pp.2331-2345, (2000).
    [4.1.14] P. Riello, P. Canton, N. Comelato, S. Polizzi, M. Verita, G. Fagherazzi, H. Hofmeister, S. Hopfe, “Nucleation and crystallization behavior of glass-ceramic materials in the Li2O–Al2O3–SiO2 system of interest for their transparency properties”, Journal of Non-Crystalline Solids, vol.288, pp.127-139, (2001).
    [4.1.15] A. E. Mchale, R. S. Roth, “Low-temperature phase relationships in the system ZrO2-TiO2”, Journal of the American Ceramic Society, vol.69, pp.827–832, (1986).
    [4.1.16] L. A. Grumes, “Study of the K-edges of 3d transition metals in pure and oxide form by X-ray absorption spectroscopy”, Physical Review B, vol.27, pp.2111-2131, (1983).
    [4.1.17] R. Brydson, H. Sauer, W. Engel, J. M. Thomas, E. Zeitler, N. Kosugi, H. Kuroda, “Electron energy loss and X-ray absorption spectroscopy of rutile and anatase: a test of structural sensitivity”, Journal of Physics: Condensed Matter, vol.1, pp.797-812, (1989).
    [4.1.18] B. Poumellec, P. J. Durham, G. Y. Guo, “Electronic structure and X-ray absorption spectrum of rutile TiO2”, Journal of Physics: Condensed Matter, vol.3, pp.8195-8204, (1991).
    [4.1.19] M. F. Ruiz-Lopez, A. Munoz-Paez, “A theoretical study of the XANES spectra of rutile and anatase”, Journal of Physics: Condensed Matter, vol.3, pp.8981-8990, (1991).
    [4.1.20] F. Farges, G. E. Brown, J. J. Rehr, “Corrdination chemistry of Ti (IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide model compounds”, Geochimica et Cosmochimica Acta, vol.16, pp.3023-3038, (1996).
    [4.1.21] Z. Y. Wu, G. Ouvrard, P. Gressier, C. R. Natoli, “Ti and O K-edges for titanium oxides by multiple scattering calculations: comparison to XAS and EELS spectra”, Physical Review B, vol.55, pp.10382-10391, (1997).
    [4.1.22] D. Cabaret, Y. Joly, H. Renevier, C. R. Natoli, “Pre-edge structure analysis of Ti K-edge polarized X-ray absorption spectra in TiO2 by full-potential XANES calculations”, Journal of Synchrotron Radiation, vol.6, pp.258-260, (1999).
    [4.1.23] W. F. David, “X-ray band spectra and molecular-orbital structure of rutile TiO2”, Physical Review B, vol.5, pp.4219-4226, (1972).
    [4.1.24] A. Bianconi, E. Fritsch, G. Calas, J. Petiau, “X-ray absorption near-edge structure of 3d transition elements in tetrahedral coordination: the effect of bond-length variation”, Physical Review B, vol.32, pp.4292-4295, (1985).
    [4.1.25] F. Farges, G. E. Brown, Jr., J. J. Rehr, “Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: comparison between theory and experiment”, Physical Review B, vol.56, pp.1809-1819, (1997).
    [4.1.26] H. Modrow, S. Bucher, J. J. Rehr, A. L. Ankudinov, “Calculation and interpretation of K-shell X-ray absorption near-edge structure of transition metal oxides”, Physical Review B, vol.67, 035123, (2003).
    [4.1.27] J. Chaboy, N. Nakajima, Y. Tezuka, “Ab initio X-ray absorption near-edge structure study of Ti K-edge in rutile”, Journal of Physics: Condensed Matter, vol.19, 266206, (2007).
    [4.1.28] F.M.F de Groot, “Novel techniques and approaches to unravel the nature of X-ray absorption spectra”, AIP Conference Proceedings, vol.882, pp.37-43, (2007).
    [4.1.29] X.C. Yang, M. Dubiel, D. Ehrt, A. Schütz, “X-ray absorption near edge structure analysis of valence state and coordination geometry of Ti ions in borosilicate glasses”, Journal of Non-Crystalline Solids, vol.354, pp.1172-1174, (2008).
    [4.1.30] A. Ramos, M. Gandais, J. Petiau, “Study of nucleation process in (Li2O, Al2O3, 4SiO2) glasses, by X-ray absorption spectroscopy and transmission electron microscopy”, Journal de Physique. Colloques, vol.C8, pp.491-494, (1985).
    [4.1.31] A. Ramos, M. Gandais, “Earliest stages of crystal growth in a silicate glass containing titanium and zirconium as nucleating elements-HRTM and XAS study”, Journal of Crystal Growth, vol.100, pp.471-480, (1990).
    [4.1.32] F. Farges, G. E. Brown, J. J. Rehr, “Corrdination chemistry of Ti (IV) in silicate slasses and melts: II. glasses at ambient temperature and pressure”, Geochimica et Cosmochimica Acta, vol.16, pp.3039-3053, (1996).
    [4.1.33] M. Emili, L. Incoccia, S. Mobilio, G. Fagherazzi, M. Guglielmi, “Structural investigations of TiO2-SiO2 glassy and glass-ceramic materials prepared by the sol-gel method”, Journal of Non-Crystalline Solids, vol.74, pp.129-146, (1985).
    [4.1.34] L. Cormier, P. H. Gaskell, G. Calas, A. K. Soper, “Medium-range order around titanium in a silicate glass studied by neutron diffraction with isotopic substitution”, Physical Review B, vol.58, pp.11322-11330, (1998).
    [4.1.35] F. Farges, “A Ti K-edge EXAFS study of the medium range environment around Ti in oxide glasses”, Journal of Non-Crystalline Solids, vol.244, pp.25-33, (1999).
    [4.1.36] M. Altarelli, D. L. Dexter, H. M. Nussenzveig, “Superconvergence and sum rules for the optical constants”, Physical Review B, vol.6, pp.4502-4509, (1972).
    [4.1.37] V. Maier, R. Frahm, “X-ray absorption studies of the short-range order in lithium aluminosilicate glass-ceramics”, Glass Science and Technology, vol.62, pp.20-28, (1989).
    [4.1.38] J. Xu, C. Lind, A. P. Wilkinson, S. Pattanaik, “X-ray diffraction and X-ray absorption spectroscopy studies of sol-gel-processed zirconium titanates”, Chemistry of Materials, vol.12, pp.3347-3355, (2000).
    [4.1.39] L. Galoisy, E. Pélegrin’, M. A. Arrio, P. Ildefonse, G. Calas, “Evidence for 6-coordinated zirconium in inactive nuclear waste glasses”, Journal of the American Ceramic Society, vol.82, pp.2219-2224, (1999).
    [4.1.40] T. Dumas, J. Petiau, “Structural organization around nucleating elements (Ti, Zr) and Zn during crystalline nucleation process in silico-aluminate glasses”, in: K.O.Hodgson, B.Hedman, J.E.Penner-Hahn (Eds.), EXAFS and Near Edge Structure III, Springer, Berlin, pp.311-313, (1984)
    [4.1.41] M. W. Barsoum, Fundamental of Ceramics, McGraw-Hill, Boston, New York, pp.391-434, (1997).
    [4.1.42] K. H. Lee, D. A. Hirschfeld, J. J. Brown, “In-situ reiforced glass-ceramic in the lithia-alumina-silica system”, in Michael C.Weinberg (Ed), Nucleation and Crystallization in Glasses and Liquids, The American Ceramic Society, Westerville, OH, pp.293-301, (1992).
    References of Sec. 4.2
    [4.2.1] W. Holand, G. H. Beall, Glass-ceramic technology. The American Ceramic Society, Ohio, (2001).
    [4.2.2] H. Bach, K. Dieter, Low thermal expansion glass ceramics, Springer, Berlin, (1995)
    [4.2.3] A. Kuzmin, S. Larcheri, F. Rocca, “Zn K-edge XANES in nanocrystalline ZnO”, Journal of Physics: Conference Series, vol.93, 012045, (2007)
    [4.2.4] O. Šipr1, F. Rocca, “Zn K edge and O K edge x-ray absorption spectra of ZnO surfaces: implications for nanorods”, Journal of Physics: Condensed Matter, vol.23, 315501, (2011).
    [4.2.5] S. Limpijumnong, J. Jutimoosik, N. Palakawong, W. Klysubun, J. Nukeaw, M. H. Du, S. Rujirawat, “Determination of miscibility in MgO-ZnO nanocrystal alloys by x-ray absorption spectroscopy”, Applied Physics Letters, vol.99, 261901, (2011).
    [4.2.6] S. Nakashima, K. Fujita, K. Tanaka, K. Hirao, T. Yamamoto, I. Tanaka, “First-principles XANES simulations of spinel zinc ferrite with a disordered cation distribution”, Physical Review B, vol.75, 174443, (2007).
    [4.2.7] S. Nakashima, K. Fujita, K. Tanaka, K. Hirao, T. Yamamoto, I. Tanaka, “Thermal annealing effect on magnetism and cation distribution in disordered ZnFe2O4 thin films deposited on glass substrates”, Journal of Magnetism and Magnetic Materials, vol.310, pp.2543–2545, (2007).
    [4.2.8] S. J. A. Figueroa, S. J. Stewart, “First XANES evidence of a disorder–order transition in a spinel ferrite compound: nanocrystalline ZnFe2O4”, Journal of Synchrotron Radiation, vol.16, pp.63–68, (2009).
    [4.2.9] K. Cheng, J. Wan, K. Liang, “Effect of fluorine source on crystallization of R2O-MgO-Al2O3-B2O3-SiO2-F (R=K+, Na+) glasses”, Materials Science and Engineering: A, vol.271, pp.167–171, (1999).
    [4.2.10] J. Tian, X. Cao, Y. Zhang, C. Wang, “Effect of fluorine content on the crystallization of fluorsilicic mica glass”, Journal of Material Science, vol.37, pp.1789–1792, (2002).
    [4.2.11] M. R. Tohidifar, P. Alizadeh, P. Riello, “Nucleation and crystallization behaviors of nano-crystalline lithium–mica glass–ceramic prepared via sol–gel method”, Materials Research Bulletin, vol.47, pp.1374–1378, (2012).
    [4.2.12] S. A. M. Abdel-Hameed, N.A. Ghoniem, E.A. Saad, F.H. Margha, “Effect of fluoride ions on the preparation of transparent glass ceramics based on crystallization of barium borates”, Ceramics International, vol.31, pp.499–505, (2005).
    [4.2.13] X. Guo, H. Yang, “Effects of fluorine on crystallization, structure and performances of lithium aluminosilcate glass ceramic”, Materials Research Bulletin, vol.41, pp.396–405, (2006).
    [4.2.14] Y. H. Wu, K. C. Hsu, C. H. Lee, “Effects of B2O3 and P2O5 doping on the microstructure evolution and mechanical strength in a lithium aluminosilicate glass–ceramic material with TiO2 and ZrO2”, Ceramics International, vol.38, pp.4111–4121, (2012).
    [4.2.15] L. Arnault, M. Gerland, A. Rivi `ere, “Microstructural study of two LAS-type glass-ceramics and their parent glass”, Journal of Materials Science, vol.35, pp.2331-2345, (2000).
    [4.2.16] K. L. Tsang, C. H. Lee, Y. C. Jean, T. E. Dann, J. R. Chen, K. L. D’Amico, T. Oversluzen, “Wiggler x‐ray beamlines at Synchrotron Radiation Research Center”, Review of Scientific Instruments, vol.66, pp.1812-1814, (1995).
    [4.2.17] S. H. Chang, C. H. Chang, J. M. Juang, L. J. Huang, T. F. Lin, C. Y. Liu, C. F. Chang, D. G. Liu, K. L. Tsang, W. F. Pong, C. H. Du, S. L. Chang, Y. L. Soo and M. T. Tang, “Design and commission of a superconducting wiggler X-ray beamline for advanced materials investigation at the National Synchrotron Radiation Research Center”, Chinese Journal of Physics, vol.50, pp.220-228, (2012).
    [4.2.18] B. Ravel and M. Newville, “ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT”, Journal of Synchrotron Radiation, vol.12, pp.537-541, (2005).
    [4.2.19] C. Siligardi, L. Barbieri, A. Bonamartini Corradi, C. Leonelli, M. De Sanctis, A. Lazzeri, “Colour development during devitrification in Li2O-ZnO-Al2O3-SiO2 glasses under conventional and microwave heating”, Physics and Chemistry of Glasses, vol.41, pp.81–88, (2000).
    [4.2.20] A. M. Hu, K. M. Liang, F. Peng, G. L Wang, H. Shao, “Crystallization and microstructure changes in fluorine-containing Li2O-Al2O3-SiO2 glasses”, Thermochimica Acta, vol.413, pp.53–55, (2004).
    [4.2.21] J. A. Griggs, K. J. Anusavice, J. J. Mecholsky, “Devitrification and microstructural coarsening of a fluoride-containing barium aluminosilicate glass”, Journal of Material Science, vol.37, pp.2017–2022, (2002).
    [4.2.22] D. A. McKeown, I. S. Muller, A. C. Buechele, I. L. Pegg, “Local environment of Zn in zirconium borosilicate glasses determined by X-ray absorption spectroscopy”, Journal of Non-Crystalline Solids, vol.261, pp.155–162, (2000).
    [4.2.23] R. Revel, D. Bazin, A. M. Flank, “Influence of cations vacancies on the K and LIII Zn edges of spinel-related compounds”, Journal of Synchrotron Radiation, vol.6, pp.717–718, (1999).
    [4.2.24] G. A. Waychunas, C. C. Fuller, J. A. Davis, J. J. Rehr, “Surface complexation and precipitate geometry for aqueous Zn(II) sorption on ferrihydrite: II. XANES analysis and simulation”, Geochimica et Cosmochimica Acta, vol.67, pp.1031–1043, (2003).
    [4.2.25] J. P. Veiga, M. O. Figueiredo, “A XANES study on the structural role of zinc in ancient tile glazes of Portuguese origin”, X-Ray Spectrometry, vol.37, pp.458–461, (2008).
    [4.2.26] P. Sainctavit, J. P. Etiau, G. Calas, M. Benfatto, C. R. Natoli, “XANES study of sulfur and zinc k-edges in zincblende : experiments and multiple-scattering calculations”, Journal de Physique. Colloques, vol.C9, pp.1109–1112, (1987).
    [4.2.27] H. Modrow, S. Bucher, J. J. Rehr, A. L. Ankudinov, “Calculation and interpretation of K-shell X-ray absorption near-edge structure of transition metal oxides”, Physical Review B, vol.67, 035123, (2003).
    [4.2.28] I. Tanaka, T. Mizoguchi, T. Yamamoto, “XANES and ELNES in ceramic science”, Journal of the American Ceramic Society, vol.88, pp.2013–2029, (2005).
    [4.2.29] J. Haug, A. Chasse, M. Dubiel, Ch. Eisenschmidt, M. Khalid, Ch. Eisenschmidt, M. Khalid, P. Esquinazi, “Characterization of lattice defects by x-ray absorption spectroscopy at the Zn K-edge in ferromagnetic, pure ZnO films”, Journal of Applied Physics, vol.110, 063507, (2011).
    [4.2.30] G. Bunker, Introduction to XAFS-A Practical Guide to X-ray Absorption Fine Structure Spectroscopy, Cambridge University Press, Cambridge, (2010).
    [4.2.31] X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou, C. Xu, “Annealing effect for surface morphology and luminescence of ZnO film on silicon”, Chemical Physics Letters, vol.364, pp.57–63, (2002).
    [4.2.32] X. Xu, P. Wang, Z. Qi, H. Ming, J. Xu, H. Liu, C. Shi, G. Lu, W. Ge, “Formation mechanism of Zn2SiO4 crystal and amorphous SiO2 in ZnO/Si system”, Journal of Physics: Condensed Matter, vol.15, pp.L607–L613, (2003).
    [4.2.33] D. Makovec, A. Kodre, I. Arčon, M. Drofenik, “The structure of compositionally constrained zinc-ferrite spinel nanoparticles”, Journal of Nanoparticle Research, vol.13, pp.1781–1790, (2011).
    [4.2.34] M. Le Grand, A.Y. Ramos, G. Calas and L. Galoisy, D. Ghaleb, F. Pacaud, “Zinc environment in aluminoborosilicate glasses by Zn K-edge extended x-ray absorption fine structure spectroscopy”, Journal of Materials Research, vol.15, pp.2015-2019, (2000).
    [4.2.35] M. W. Barsoum, Fundamental of Ceramics, McGraw-Hill, Boston, New York, (1997).
    References of Sec. 4.3
    [4.3.1] W. Holand and G.H. Beall, Glass-ceramic Technology, The American Ceramic Society, Westerville, Ohio, pp.92-95, (2002).
    [4.3.2] H. Bach and K. Dieter, Low Thermal Expansion Glass Ceramics, Springer-Verlag press, Berlin, pp.62-66, (1995).
    [4.3.3] P. Allia, O. Bretcanu, E. Vernè, F. Celegato, M. Coisson, P. Tiberto, F. Vinai, F. Spizzo, and Melissa Tamisari, “Magnetotransport properties of a percolating network of magnetite crystals embedded in a glass-ceramic matrix”, Journal of Applied Physics, vol.105[8], 083911, (2009).
    [4.3.4] W. Wisniewski, R. Harizanova, G. Völksch and Christian Rüssel, “Crystallisation of iron containing glass-ceramics and the transformation of hematite to magnetite”, CrystEngComm, vol.13[12], pp.4025-4031, (2011).
    [4.3.5] Z. J. Wang, N. Wen, K.Q. Li, X.Y. Huang and L. P. Zhu, “Crystallization characteristics of iron-rich glass ceramics prepared from nickel slag and blast furnace slag”, International Journal of Minerals, Metallurgy and Materials, vol.18[4], pp.455-459, (2011).
    [4.3.6] H. Yang and X. Z. Guo, “Effect of colouring agent on colourisation and structure of Li2O-Al2O3-SiO2 glass ceramics”, International Journal of Materials and Product Technology, vol.37[3/4], pp.280-286 (2010).
    [4.3.7] Y. H. Wu, K. C. Hsu, C. H. Lee, “Effects of B2O3 and P2O5 doping on the microstructure evolution and mechanical strength in a lithium aluminosilicate glass–ceramic material with TiO2 and ZrO2”, Ceramics International, vol.38, pp.4111–4121, (2012).
    [4.3.8] L. Arnault, M. Gerland, A. Rivi `ere, “Microstructural study of two LAS-type glass-ceramics and their parent glass”, Journal of Materials Science, vol.35, pp.2331-2345, (2000).
    [4.3.9] S. Fujita and S. Tanabe, “Structural evolution of Er3+ ions in Li2O-Al2O3-SiO2 glass-ceramics”, Journal of the Ceramic Society of Japan, vol.116[10], pp.1121-1125, (2008).
    [4.3.10] R. Wurth, F. Muñoz, M. Muller and C. Russel, “Crystal growth in a multicomponent lithia aluminosilicate glass“, Materials Chemistry and Physics, vol.116[2/3], pp.433-437, (2009).
    [4.3.11] A. Hu, M. Li and D. Mao, “Controlled crystallization of glass–ceramics with two nucleating agents”, Materials Characterization, vol.60[12], pp.1529-1533, (2009).
    [4.3.12] K. L. Tsang, C.H. Lee, Y.C. Jean, T.E. Dann, J.R. Chen, K.L. D’Amico, T. Oversluzen, “Wiggler x‐ray beamlines at Synchrotron Radiation Research Center”, Review of Scientific Instruments, vol.66[2], pp.1812-1814, (1995).
    [4.3.13] S. H. Chang, C. H. Chang, J. M. Juang, L. J. Huang, T. F. Lin, C.Y. Liu, C. F. Chang, D. G. Liu, K. L. Tsang, W. F. Pong, C. H. Du, S. L. Chang, Y. L. Soo and M. T. Tang, “Design and commission of a superconducting wiggler X-ray beamline for advanced materials investigation at the National Synchrotron Radiation Research Center”, Chinese Journal of Physics, vol.50[2], pp.220-228, (2012).
    [4.3.14] B. Ravel and M. Newville, “ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT”, Journal of Synchrotron Radiation, vol.12[4], pp.537-541, (2005).
    [4.3.15] G. E. Brown, Jr., F. Farges and G. Calas, “X-ray scattering and x-ray spectroscopy studies of silicate melts”, Ed. by J.F. Stebbins, P.F. McMillan and D. B. Dingwell, Mineralogical Society of America, Chantilly, pp.317-410, (1995).
    [4.3.16] F. Farges, G. E. Brown, Jr. and J. J. Rehr, “Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: Comparison between theory and experiment”, Physical Review B, vol.56[4], pp.1809-1819, (1997).
    [4.3.17] L. A. Grumes, “Study of the K edges of 3d transition metals in pure and oxide form by x-ray-absorption spectroscopy”, Physical Review B, vol.27[4], pp.2111-2131, (1983).
    [4.3.18] L. Galoisy, L. Cormier, G. Calas and V. Briois, “Environment of Ni, Co and Zn in low alkali borate glasses: information from EXAFS and XANES spectra”, Journal of Non-Crystalline Solids, 293-295, pp.105-111, (2001).
    [4.3.19] C. Klein, Jr. C. S. Hurlbut, Manual of Mineralogy, 21st Edition, John Wiley & Sons (1993), pp.182-200.
    [4.3.20] B. Singh, D. M. Sherman, R. J. Gilkes, M. Wells and J. F. W. Mosselmans, “Structural chemistry of Fe, Mn, and Ni in synthetic hematites as determined by extended X-ray absorption fine structure spectroscopy”, Clays and Clay Minerals, vol.48[5], pp.521-527, (2000).
    References of Chapter 5:
    [5.1] H. Xu, P. J. Heaney and G. H. Beall, “Phase transitions induced by solid solution in stuffed derivatives of quartz: A powder synchrotron XRD study of the LiAlSiO4-SiO2 join”, American Mineralogist, vol.85, pp.971-979, (2000).
    [5.2] T. Egami and S. J. L. Billinge, Underneath the Bragg Peaks Structural Analysis of Complex Materials, Elsevier Ltd., (2003).
    [5.3] Th. Proffen, S. J. L. Billinge, T. Egami and D. Louca, “Structural Analysis of Complex Materials Using the Atomic Pair Distribution Function – a Practical Guide”, Zeitschrift für Kristallographie, vol.218, pp.132–143, (2003).
    [5.4] Th. Proffen and Hyunjeong Kim, “Advances in total scattering analysis”, Journal of Materials Chemistry, vol.19, pp.5078–5088, (2009).
    [5.5] S. Bates, G. Zografi, D. Engers, K. Morris, K. Crowley and Ann Newman, “Analysis of Amorphous and Nanocrystalline Solids from Their X-Ray Diffraction Patterns”, Pharmaceutical Research, vol.23, pp.2333-2349, (2006).
    [5.6] S. Billinge, “Local Structure from Total Scattering and Atomic Pair Distribution Function (PDF) Analysis”, in Powder Diffraction, Theory and Practice Edited by R. E. Dinnebier and S J L Billinge, Royal Society of Chemistry, (2008).
    [5.7] C.Benmore, lecture note of 11th National School on Neutron & X-ray Scattering, Oak Ridge & Argonne lab, (2009).
    References of Chapter 7
    [7.1] B. N. Roy, “Spectroscopic Analysis of the Structure of Silicate Glasses along the Joint xMAlO2-(1–x)SiO2(M = Li, Na, K, Rb, Cs)”, Journal of the American Ceramic Society, vol.70, pp.183-192, (1987).
    [7.2] L. Arnault, M. Gerland and A. Rivi Ere, “Microstructural study of two LAS-type glass-ceramics and their parent glass”, Journal of Materials Science, vol.35, pp.2331 – 2345, (2000).
    [7.3] E. I. Suzdal’tsev, S. P. Borodai, A. S. Khamitsaev and D. V. Kharitonov, “IR Spectroscopy Study of Pre-Crystallization and Its Effect on the Phase Composition of Lithium Aluminosilicate Glass and Glass Ceramic”, Refractories and Industrial Ceramics, vol.45, pp.19-24, (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE