簡易檢索 / 詳目顯示

研究生: 蘇奕維
Su, Yi-Wei
論文名稱: 微波加速生質柴油之酯化反應研究
Study of Microwave-Accelerated Esterification Reaction of Biodiesel
指導教授: 張存續
Chang, Tsun-Hsu
口試委員: 李義發
Lee, Yi-Fa
汪上曉
Wong, Shang-Hsiao
趙賢文
Chao, Hsien -Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 51
中文關鍵詞: 微波酯化反應生質柴油
外文關鍵詞: Microwave, Esterification Reaction, Biodiesel
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來經專家學者研究,微波熱處理技術有長足進步,並在材料領域上有重大的突破,但目前常見的微波設備仍處於研究或較小型的生產規模。此研究與承德油脂合作,我們以縮短脂化製程之反應時間、減少能源消耗以及原料完整利用作為技術導入重點,期望透過電磁波模擬設計出精確控制之微波系統,以其中高效率的微波腔體形成穩定且適合的電場模態來加速廢食用油的熱處理,更進一步的是走出實驗機台或小型產線,作為業界的領頭羊發展出大型工業量產所需之產線原型機,開創量產型微波應用機台之市場,將微波製程成功推廣到工業生產上,藉此幫助業主降低生產成本。目前,設計出的實驗腔體的阻抗匹配巨有相當大的彈性,除了可以滿足各種實驗條件的設定,例如不同比例的原料、反應溫度、微波功率或是催化物、加速反應的成效非常明顯以外,此阻抗設計僅與液面高度有關與體積無關,這在克服微波穿透力問題上有突破的進展。此外,微波效應一直是我們所感興趣的議題,微波不僅僅提供加熱效果它也產生非熱效應。然而,要回答這個背後的原理與機制,非常不易,仍是物理學的一個大挑戰;因此,本研究將採用有系統的描述此現象,藉由探討相同反應溫度條件下不同微波功率和功率密度對化學反應的影響,並從結果已可間接證實其非熱效應的存在。


    While microwave material processing technology has made great progress in recent years, off-the-shelf microwave equipment is still in relatively small production scale. This research cooperates with Chant Oil, striving to shorten the reaction time of esterification and simultaneously reducing energy consumption and waste of raw material, hoping to design a easily controllable and energy saving microwave system which contains a resonator that forms a stable EM mode to accelerate the heat treatment of Waste Cooking Oils through the use of EM simulator, and even further steps away from laboratory-sized experiment, developing a production line prototype required for industrial mass production, being a pioneer that brings microwave technology to the traditional chemical industry, promoting the market of microwave processing system, and finally helps businesses reduce production cost. The designed microwave reactor has great impedance tuning flexibility, being able of adapting to different kinds of experiment condition, e.g. different ratios of raw materials, reaction temperature, microwave power, catalytic materials. The reactor not only shows that microwave assisted experiment is effective, but also boast the impedance design which is only related to liquid level and volume, making a breakthrough in conquering the problem of wave penetration in large scale heating. Microwave-material interaction is always been an issue of interest to us. Microwaves not only provide heating effects, but also produce non-thermal ones. However, it is very difficult to find the principles and mechanisms behind this. It is still a big challenge in physics. This study will systematically discuss this phenomenon by comparing the effect of different microwave power and power density under the same reaction temperature conditions, and the results indirectly shows the existence of microwave non-thermal effect.

    第一章、緒論 1 1.1、前言 1 1.2、生質柴油製程 2 1.3、微波反應介紹 4 1.3.1、微波 4 1.3.2、微波加熱機制 4 1.4、研究動機 5 第二章、腔體與周邊設計 6 2.1、腔體模擬 6 2.2、第一代腔體 6 2.2.1、腔體設計 6 2.2.2、腔體討論 11 2.3、第二代腔體 14 2.3.1、腔體設計 14 2.3.2、腔體討論 22 2.4、第三代腔體 23 2.4.1、腔體設計 23 2.4.2、腔體討論 28 第三章、實驗設備與方法 29 3.1、傳統以及微波之反應裝置 29 3.1.1、微波加熱之反應裝置 29 3.1.2、傳統加熱之反應裝置 40 第四章、實驗內容 41 4.1、酯化反應 41 4.2、分析方法 42 4.3、實驗材料與方法 43 4.3.1、實驗藥品 43 4.3.2、實驗操作 43 4.4、實驗結果 44 第五章、結論 49 參考資料 50

    [1] Gole, Vitthal L., and Parag R. Gogate. "Intensification of synthesis of biodiesel from non-edible oil using sequential combination of microwave and ultrasound." Fuel Processing Technology 106 (2013): 62-69.
    [2] Kim, Daeho, et al. "Accelerated esterification of free fatty acid using pulsed microwaves." Bioresource technology 102.14 (2011): 7229-7231.
    [3] Kim, Daeho, et al. "Microwave-accelerated energy-efficient esterification of free fatty acid with a heterogeneous catalyst." Bioresource technology 102.3 (2011): 3639-3641.
    [4] El Sherbiny, Shakinaz A., Ahmed A. Refaat, and Shakinaz T. El Sheltawy. "Production of biodiesel using the microwave technique." Journal of Advanced Research 1.4 (2010): 309-314.
    [5] Chen, Kang-Shin, et al. "Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system." Energy 38.1 (2012): 151-156.
    [6] Barnard, T. Michael, et al. "Continuous-flow preparation of biodiesel using microwave heating." Energy & Fuels 21.3 (2007): 1777-1781.
    [7] Patil, Prafulla D., et al. "Microwave-assisted catalytic transesterification of camelina sativa oil." Energy & Fuels 24.2 (2009): 1298-1304.
    [8] Suppalakpanya, K., S. B. Ratanawilai, and C. Tongurai. "Production of ethyl ester from crude palm oil by two-step reaction with a microwave system." Fuel 89.8 (2010): 2140-2144.
    [9] Azcan, Nezihe, and Aysegul Danisman. "Microwave assisted transesterification of rapeseed oil." Fuel 87.10-11 (2008): 1781-1788.
    [10] Lertsathapornsuk, V., et al. "Microwave assisted in continuous biodiesel production from waste frying palm oil and its performance in a 100 kW diesel generator." Fuel Processing Technology 89.12 (2008): 1330-1336.
    [11] Zhang, Su, et al. "Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst." Bioresource technology 101.3 (2010): 931-936.
    [12] Yuan, H., B. L. Yang, and G. L. Zhu. "Synthesis of biodiesel using microwave absorption catalysts." Energy & Fuels 23.1 (2008): 548-552.
    [13] Azcan, Nezihe, and Elif Demirel. "Obtaining 2-octanol, 2-octanone, and sebacic acid from castor oil by microwave-induced alkali fusion." Industrial & Engineering Chemistry Research 47.6 (2008): 1774-1778.
    [14] Hernando, J., et al. "Biodiesel and FAME synthesis assisted by microwaves: homogeneous batch and flow processes." Fuel 86.10-11 (2007): 1641-1644.
    [15] Azcan, Nezihe, and Aysegul Danisman. "Alkali catalyzed transesterification of cottonseed oil by microwave irradiation." Fuel 86.17-18 (2007): 2639-2644.
    [16] Leadbeater, Nicholas E., and Lauren M. Stencel. "Fast, easy preparation of biodiesel using microwave heating." Energy & Fuels 20.5 (2006): 2281-2283.
    [17] Patil, Prafulla, et al. "Transesterification kinetics of Camelina sativa oil on metal oxide catalysts under conventional and microwave heating conditions." Chemical Engineering Journal 168.3 (2011): 1296-1300.
    [18] Nagahata, Ritsuko, et al. "Microwave-Assisted Facile and Rapid Esterification of Amino Acids I: Esterification of L-Leucine from Batch to Flow Processes and Scale-Up." Natural Science 9.4 (2017): 110-122.

    QR CODE