研究生: |
楊卿潔 Yang, Ching-Chieh |
---|---|
論文名稱: |
有限單元法應用於多項肩關節手術之應力分析 Stress Analysis in Various Shoulder Surgeries by Finite Element Method |
指導教授: |
陳榮順
Chen, Rongshun 葉孟考 Yeh, Meng-Kao |
口試委員: |
施俊雄
吳濬哲 林永福 鄭仙志 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 140 |
中文關鍵詞: | 有限單元法 、肩胛鑿痕 、肩盂基板 、關節肩盂部份 |
外文關鍵詞: | Finite Element Method, scapular notching, baseplate, glenoid component |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有限單元法(Finite Element Method)是用數值分析的方法來研究物理學領域相關問題的一門學術。有限單元法在醫學及骨科之臨床應用相當廣泛,可以預見的,有限單元法將持續的對骨材之設計研發多所貢獻。下列章節將針對有限單元法應用於多項肩關節手術及反置型人工肩關節設計之應力分析詳為論述。
肩關節係由三個解剖次關節:肩肱關節(Gleno-Humeral Joint),肩鎖關節(Acromio-Clavicular Joint),胸鎖關節(Sterno-Clavicular Joint)以及兩個關節空間:肩峰下空間(Subacromion Space)及肩胸空間(Scapulo-Thoracic Space),外加一個懸吊機轉:喙鎖機轉(Coraco-Clavicular Mechanism)所構成。論文之解剖文獻回顧僅針對肩鎖關節手術及反置型人工肩關節手術相關之解剖結構行之。對肩關節結構之詳細解剖知識有助於肩關節之建模及手術之應力分析。
雖然肩關節手術於近數十年有長足之進步,肩鎖關節手術,肩關節外傷之後遺症,無法修補之旋轉肌破裂對骨科醫師而言仍為鉅大之挑戰。以目前所知,本論文為首篇肩鎖關節之有限單元法相關文獻,二維有限單元之模型係根據臨床X光檢查統計所得之骨骼結構平均參數及文獻所得之組織材料參數建構而成。建模之過程係採用有限單元分析(Finite Element Analysis)商業軟體ANSYS。分析之過程依序為:前處理,求解,以及後處理。在前處理之步驟,選擇適切之單元類別為首要之務,再則輸入組織之材料參數,繼而建模及畫分網格;在求解的過程則給予適當之邊界條件及負載;求解後進入後處理階段,可以得到應力、位移之分佈圖。文中所建為二維之模型,所選擇之單元為Plane 42。
為進行反置型人工肩關節相關之研究,文中根據法國Tornier公司所生產之反置型人工肩關節建模,模擬實驗顯示肩盂球之偏心設計及外側加厚設計,雖可減少肩胛鑿痕(scapular notching) ,但相對的要付出肩盂基板(baseplate)應力集中以及後續肩盂基板鬆脫的代價,最大應力出現在下方螺絲之基部,顯示下方螺絲中間部位之斷裂原因可能是直接撞擊造成。本研究係提供另一可行之工具以為反置型人工肩關節肩盂部份(glenoid component)之設計,爾後應用反置型人工肩關節之模型再行研究,可探討反置型人工肩關節肱骨部份(humeral component)之最佳設計,亦可探討在諸多不同肱骨部份暨肩盂部份設計中之最佳化組合。
The finite element method (FEM) is a numerical method to solve the fields problems. FEM has been used in several fields of medical practice and orthopedic practice. It is acknowledged today that FEM will, continuously, contribute to further progress in the design and development of orthopedic implants. In the thesis, we implemented the FEM model to analyze the stress distribution in various shoulder surgeries and investigate the stress distribution in various glenoid designs of reversed shoulder prosthesis (RSP).
The shoulder joint is composed of three anatomic components: gleno-humeral (G-H) joint, acromio-clavicular (AC) joint, sterno-clavicular (SC) joint and two main space, namely, the subacromion (SA) space, the scapula-thoracic (ST) space and the coraco-clavicular (C-C) mechanism. Since the author focus on the application of finite element analysis on the realm of shoulder surgery, the anatomic review is emphasized on the detailed structures which are more correlated with surgery of acromio-clavicular joint and design of RSP. With detailed anatomy knowledge, we can construct the finite element model for stress analysis of shoulder surgery.
Despite of the tremendous progress for shoulder surgery in decades, the surgery for AC joint reconstruction, sequelae of trauma and un-reparable rotator cuff tear remained challenging task for orthopedic surgeon. To our knowledge, this is the first FEA study on AC joint complex. The two dimensional (2D) finite element (FE) models are constructed according to clinically obtained radiographic data and documented parameters of tissues material properties. ANSYS commercial software was adopted to complete the construction process based on finite element method (FEM). The analysis process in commercial software ANSYS are pre-processor, solver, and post-processor orderly. In pre-processor, choice of proper element type is the first step, followed by entering the material properties of structure. Then, contribute the geometry model and mesh model. In solver, after giving proper boundary conditions, load and solve the problems. As for post-processor, the data and figure could be obtained from the deformation and stress results. In this research, the models are 2D, the element Plane 42 was used.
The AC joint Model was then verified by comparing with the published experimental results. The first simulated results showed that coraco-acromial ligament (CAL) plays significant role in biomechanical function of AC joint, and also pointed the numerical support for existence of Salter’s complex. Subsequent studies with this model, we further confirmed that arthroscopic subacromion decompression (ASD) may insult the Salter’s complex and lead to post-operative complication of AC joint. Finally we applied the AC model to simulate distal clavicle resection (DCR). We dictated that the direct method is a better method for DCR and the proper length of DCR is found to be between 0.6 and 0.7 cm.
For the study of RSP design, we constructed a model of RSP which is based on the product of Tornier’s company. Simulated results dictated that increased eccentric offset and lateral offset of glenosphere, although being able to reduce scapular notching, may pay the penalty of significant stress concentration over glenoid and its subsequent loosening. Maximum stress occurs at the base of inferior screw elucidates the direct contact failure mode at the middle of inferior screw. Our study provides an alternative tool for the optimal design of glenoid component of RSP. We may further implement the RSP model to find the optimal humeral design and optimal combinations of various designs of RSP in the future.
1. R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed., John Wiley & Sons, Inc., Danvers, 2002.
2. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals. 6th ed., Elsevier Butterworth-Heinemann, Inc., Burlington, MA, USA, pp. 1-19, 2006.
3. E. Stein, “O. C. Zienkiewicz, A pioneer in the development of the finite element method in engineering science,” Steel Construction, Vol. 2, No. 4, pp. 264-272, 2009.
4. J. K. Hastings, M. A. Juds, J. R. Brauer, “Accuracy and Economy of Finite Element Magnetic Analysis,” 33rd Annual National Relay Conference, 1985.
5. W. A. Brekelmans, H. W. Poort, T. J. Slooff, “A new method to analyse the mechanical behavior of skeletal parts,” Acat orthop Scand, Vol. 43, pp. 301-317, 1972.
6. E. F. Rybicki, F. A. Simonen and E. B. Weis, “On the mathematical analysis of stress in the human femur,” J Biomechanics, Vol 5, pp. 203-215, 1972.
7. R. Huiskes and E.Y.S. Chao, “A survey of finite element analysis in orthopedic biomechanics: the first decade,” J biomechanics, Vol. 16, pp. 385-409, 1983.
8. A. Rohlmann, G. Bergmann and R. Koelbel, The relevance of stress computation in the femur with and without endoprosthesis. Finite Element in Biomechanics. Edited by R. H. Gallagher, B. R. Simon, P.C. Johnson and J.F. Gross, pp. 361-377 .John Wiley, New York. (A. Rohlmann , G. Bergmann G, R. Kölbel R, The stresses in femur: I. Intact femur without consideration of the iliotibial tract, Vol. 118, No. 6, pp. 897-904, 1980. [Article in German])
9. A. W. Eberhardt and B.S. Kim, “Stress intensity factors for a vertical surface crack in polyethylene subject to rolling and sliding contact,” J Biomech Eng, Vol. 120, No. 6, pp. 778-83, 1998.
10. S. M. Bowman, X. E. Guo, D. W. Cheng, T. M. Keaveny, L. J. Gibson, W. C. Hayes and T. A. McMahon, “Creep contributes to the fatigue behavior of bovine trabecular bone,” J Biomech Eng, Vol. 120, No. 5, pp. 647-654, 1998.
11. C. M. Powers, I. Y. Lee, H. B. Skinner and J. H. Keyak, “Effects of distal cement voids on cement stress in total hip arthroplasty,” J Arthroplasty, Vol. 13,No. 7, pp. 793-798, 1998.
12. K. Kimura, Y. Fukase, M. Makino, C. Masaki, T. Nakamoto and R. Hosokawa, “Three-dimensional finite element analysis of fixed complete-arch prostheses supported by 4 immediate-loaded implants in the completely edentulous maxilla using clinical computerized tomography data,” J Oral Implantol, Vol. 37, pp. 96-105, 2011.
13. R. M. Araugio, J. Jr. Landre, Dde. L. Silva, W. Pacheco, M. W. Pithon and D. D. Oliveira, “Influence of the expansion screw height on the dental effects of the hyrax expander: A study with finite elements,” Am J Orthod Dentofacial Orthop, Vol. 143, No. 2, pp. 221-227, 2013.
14. J. C. Sarron, J. P. Caillou, J. Da Cunha, J. C. Allain and A. Trameçon, “Consequences of nonpenetrating projectile impact on a protected head: study of rear effects of protections,” J Trauma, Vol. 49, No. 5, pp. 923-929, 2000.
15. X. Chai, M. van Herk, M. C. Hulshof and A. Bel, “A voxel-based finite element model for the prediction of bladder deformation,” Med Phys, Vol. 39, No. 1, pp. 55-65, 2012.
16. P. Prakash, V. A. Salgaonkar, B. E Clif and C. J. Diederich, “Multiple applicator hepatic ablation with interstitial ultrasound devices: theoretical and experimental investigation,” Med Phys, Vol. 39, No. 12, pp. 7338-7749, 2012.
17. S. Sugiura, T. Washio, A. Hatano, J. Okada, H, Watanabe and T. Hisada, “Multi-scale simulations of cardiac electrophysiology and mechanics using the University of Tokyo heart simulator,” Prog Biophys Mol Biol, Vol. 110, No. 2-3, pp. 380-389, 2012.
18. P, Totaro, S. Morganti, C. L. Yon, R, Dore, M, Conti, F, Auricchio and M, Vigano, “Computational finite element analyses to optimize graft sizing during aortic valve-sparing procedure,” J Heart Valve Dis, Vol. 21, No. 2, pp. 141-147, 2012.
19. M. Watson, K. J. Mathias, N. Maffulli, D. W. Hukins and D. E. Shepherd, “Finite element modeling of the Ilizarov external fixation system,” Proc Inst Mech Eng H, Vol. 221, No. 8, pp. 863-871, 2007.
20. F. E. Donaldson, P. Pankaj and A. H. Simpson, “Investigation of factors affecting loosening of Ilizarov ring-wire external fixator systems at the bone-wire interface,” J Orthop Res, Vol. 30, No. 5, pp. 726-732, 2012.
21. W. Qi, Y. B. Yan, Y. Zhang, W. Lei, P. J. Wang and J. Hou, “Study of stress distribution in pedicle screws along a continuum of diameters: a three-dimensional finite element analysis,” Orthop Surg, Vol. 3, No. 1 pp. 57-63, 2011. 22. H. J. Kim, H. J. Chun, K. T. Kang, S. H. Moon, H. S. Kim, J. O. Park, E. S. Moon , B. R. Kim, J. S. Sohn, Y. N. Ko and H. M. Lee, “The biomechanical effect of pedicle screws insertion angle and position on the superior adjacent segment in 1 segment lumbar fusion,” Spine, Vol. 37, No. 19, pp. 637-644, 2012.
23. H, Xu, H. Tang, X, Guan, F. Jiang, N. Xu, W. Ju, X. Zhu, X. J. Zhang, Q, Zhang and M. Li, “Biomechanical Comparison of Posterior Lumbar Interbody Fusion and Transforaminal Lumbar Interbody Fusion by Finite Element Analysis,” Neurosurgery, Vol. 72, pp. 21-26, 2013.
24. P. J. Prendergast, P. E. Galibarov, C. Lowery and A. B. Lennon, “Computer simulating a clinical trial of a load-bearing implant: an example of an intramedullary prosthesis,” J Mech Behav Biomed Mater, Vol. 4, No. 8, pp. 1880-1887, 2011.
25. R. Fredriksson, J. Shin and C. D. Untaroiu, “Potential of pedestrian protection systems-a parameter study using finite element models of pedestrian dummy and generic passenger vehicles,” Traffic Inj Prev, Vol. 12, No. 4, pp. 398-411, 2011.
26. M. Andersson, B. Pipkorn and P. Lövsund, “Rear seat child safety in near-side impacts: a modeling study of common sitting positions,” Traffic Inj Prev, Vol.14, No. 2, pp. 198-208, 2013.
27. P. Favre, P. Kloen, D. L. Helfet and C. M. Werner, “Superior versus anteroinferior plating of the clavicle: a finite element study,” J Orthop Trauma, Vol. 25, No. 11, pp. 661-665, 2011.
28. D. R. Suárez, W. Nerkens, E. R. Valstar, P. M. Rozing and F. van Keulen, “Interface micromotions increase with less-conforming cementless glenoid components,” J Shoulder Elbow Surg, Vol. 21, No. 4, pp. 474-82, 2012.
29. N. S. Ribeiro, J Folgado, P. R. Fernandes and J. Monteiro, “Wear analysis in anatomical and reversed shoulder prostheses,” Comput Methods Biomech Biomed Engin, Vol. 14, No. 10, pp. 883-892, 2011.
30. P. Favre, S. Perala, P. Vogel, S. F. Fucentese, J. R. Goff, C. Gerber and J. G. Snedeker, “In vitro assessments of reverse glenoid stability using displacement gages are misleading - recommendations for accurate measurements of interface micromotion,” Clin Biomech, Vol. 26, No. 9, pp. 917-922, 2011.
31. P. T. Nigro, S. Gutiérrez and M. A. Frankle, “Improving glenoid-side load sharing in a virtual reverse shoulder arthroplasty model,” J Shoulder Elbow Surg, 2013.
32. C. C. Yang, C. L. Lu, C. H. Wu, J. J. Wu, T. L. Huang, R. Chen and M. K. Yeh, “Stress analysis of glenoid component in design of reverse shoulder prosthesis using finite element method,” J Shoulder Elbow Surg, 2013.
33. D. B. Chaffin, B. J. Andersson and B. J. Martin, Occupational Biomechanics: Chapter 4, Biomechanical Considerations in Machine Control and Workspace Design, 4th end, John Wiley & sons, New Jersey, pp. 228-247, 2006.
34. J. Guyot, Atals of Human Limb Joints: Chapter 4, The Shoulder Girdle and Shoulder Joints, 2nd revised end, Springer-Verlag Berlin Heidelberg, pp. 108-139, 1991.
35. T. R. Norris, Orthopedic Knowledge Update Shoulder and Elbow: Chapter 1, Tissue and Their Structure, American Shoulder and Elbow Surgeon, Rosemont, pp. 3-9, 1997.
36. K. Nobuhara, The shoulder: Its function and clinical aspects: Chapter 3, Construction of the shoulder in sport, World Scientific, Tokyo, pp. 10-30, 2001.
37. T. P. Gibbs, J. A. Slides and D. T. Harryman, “The effect of capsular venting on glenohumeral subluxation,” Clin Orthop Relat Res, Vol. 268, pp. 120-127, 1991.
38. R. Litchfield, G. Hagerman, R. J. Hawkins and J. Atkins, Rehabilitation Exercise and Return to Sports: In Shoulder Injuries in the Athlets. Edited by R. J. Hawkins, G. W. Misamore, Churchill Livingstone, New York, pp. 325-337, 1996.
39. R. M. Pattern, “Vacuum Phenomenon: a potential pitfall in the interpretations of gradient-recalled-echo MR imaging of shoulder,” AJR, Vol. 162, pp. 1383-1386, 1994.
40. M. Rafi and H. labrumrooznia, “Variation in normal glenoid.(letter),” AJR, Vol. 152, pp. 201-202, 1989.
41. J. M. Legan, T. K. Burkhard and W. E. Golf, “Tear of the glenoid labrum: MRI image of 88 arthroscopically confirmed cases,” Radiology, Vol. 179, pp. 241-246, 1991.
42. M. E. Schweitzer, M. J. Magbalob and J. M. Fenlin, “Effusion criteria and clinical importance of glenohumeral joint fluid: MR imaging evaluation,” Radiology, Vol. 194, pp. 821-824, 1995.
43. J. J. Warner, X. H. Deng, R. F. Warren and P. A. Torzilli, “Static capsule-ligamentous retrains to superior-inferior translation of the gleno-humeral joint,” Am J Sports Med, Vol. 20, pp. 675-685, 1992.
44. T. Mihata, M. H. McGarry and J. E. Tibone, “Biomechanical assessment of Type II superior labral anterior-posterior (SLAP) lesions associated with anterior shoulder capsular laxity as seen in throwers: a cadaveric study,” Am J Sports Med, Vol. 36, No. 8, pp. 1604-10, 2008.
45. D. A. Ferrari, “Capsular ligaments of the shoulders: Anatomical and functional study of the anterior superior capsule,” Am J Sports Med, Vol. 18, No. 1, pp. 20-24,1990.
46. S. J. Turkel, M. W. Panio, J. L. Marshall and F. G. Girgis, “Stabilizing mechanisms preventing anterior dislocation of the glenohumeral joint,” J Bone Joint Surg Am, Vol. 63, No. 8, pp. 1208-17, 1981.
47. S. J. O'Brien, M. C. Neves and S. P. Arnoczky, “The anatomy and histology of the inferior glenohumeral ligament complex of the shoulder,” Am J Sports Med, Vol. 18, No. 5, pp. 449-56, 1990.
48. J. Ozaki, Y. Nakagawa, G. Sakurai and S. Tamai, “Recalcitrant chronic adhesive capsulitis of the shoulder. Role of contracture of the coracohumeral ligament and rotator interval in pathogenesis and treatment,” J Bone Joint Surg Am, Vol. 71, No. 10, pp. 1511-5, 1989.
49. D. T. Harryman II, “Role of coracohumeral ligament in passive motion and stability of shoulder joint,” Orthop Trans, Vol. 4, p. 595, 1990.
50. R. J. Hawkins and J. P. Shutte, “The assessment of glenohumeral transition using manual and fluoroscope techniques,” Orthop Trans, Vol. 12, pp. 727, 1988.
51. C. S. Neer and C. R. Foster, “Inferior capsular shift for involuntary inferior and multidirectional instability of the shoulde: A preliminary report,” J Bone Joint Surg A, Vol. 62, No. 6, pp. 897-908, 1980.
52. T. W. Kozak and R. H. Cofield, Chapter 62, Impingement syndrome. In Reconstructive surgery of the joint, Edited by B. F. Morrey, 2nd ed., Mayo foundation, 1996.
53. C. C. Neer II, “Acromioplasty for the chronic impingement in the shoulder: a preliminary report,” J Bone Joint Surgery, Vol. 63A, p. 416, 1981.
54. R. J. Hawkin and J. S. Abrams, “Impingement in the absence of rotator cuff tear (stage 1 and stage 2),” Orthop Clin North Am, Vol. 18, p. 373, 1987.
55. K. Takase, “The coracoclavicular ligaments: an anatomic study,” Surg Radiol Anat, Vol. 32, No. 7, pp. 683-8, 2010.
56. K. J. Renfree, M. K. Riley, D. Wheeler, J. G. Hentz and T. W. Wright, “Ligamentous anatomy of the distal clavicle,” J Shoulder Elbow Surg, Vol. 12, No. 4, pp. 355-9, 2003.
57. G. M. Salzmann, J. Paul, G. H. Sandmann, A. B. Imhoff and P. B. Schöttle, “The coracoidal insertion of the coracoclavicular ligaments: an anatomic study,” Am J Sports Med, Vol. 36, No. 12, pp. 2392-7, 2008.
58. B. B. Terra, B. Ejnisman, E, Figueiredo, Sao Paulo and Bresil, “Anatomic variation of the conoid ligament,” 23th SESEC, Lyon, France, 2011.
59. R. S. Costic, J. E. Labriola, M. W. Rodosky and R. E. Debski, “Biomechanical rationale for development of anatomical reconstructions of coracoclavicular ligaments after complete acromioclavicular joint dislocations,” Am J Sports Med, Vol. 32, No. 8, pp. 1929-36, 2004.
60. C. D. Clemente, Anatomy, A regional atalas of the human body: Chapter 1, Pectoral region, Axilla, shoulder, and Upper limb. 6th ed. Lippincott Williams & Wikins, Phyladelphia, pp. 112-113, 2011.
61. P. Abrahams, J. Craven and J. Lumley, Illustrated clinical anatomy: Chapter 12, The shoulder region, Oxford University Press Inc., pp. 160-180, 2005.
62. L. U. Bigliani, D. Morrison and E. W. April, “The morphology of the acromion and its relationship to rotator cuff tears,” Orthop. Trans, Vol. 10, No. 228, 1986.
63. V. T. Inman, J. B. Saunders and L. C. Abbot, “Observation on the function of the shoulder joint,” J Bone Joint surgery, Vol. 26, No. 1, 1994.
64. C. G. Rios, R. A. Arciero and A. D. Mazzocca, “Anatomy of the clavicle and coracoid process for reconstruction of the coracoclavicular ligaments,” Am J Sports Med, Vol. 35, No. 5, pp. 811-7, 2007.
65. I. Singh, Essential of anatomy, 2nd ed, Jaypee Brothers Medical publishers, New Delhi, India, pp. 168-169, 2009.
66. L. J. Segerlind, Applied Finite Element Analysis, 2nd, Wiley, New York,1984.
67. ANSYS User’s Manual, ANSYS Inc.
68. S. G. Chen, ANSYS introduction, Kang Yuan, CHUAN HWA SCIENCE & TECHNOLOGY BOOK CO., Taipei, Taiwan, 2003.
69. C.C. li, Quality Engineer of Robust design, Taipei books cooperation, Taipei, Taiwan, 1993.
70. E. G. Salter, R. J. Nasca and B. S. Shelley, “Anatomical observations on the acromioclavicular joint and supporting ligaments,” The American Journal of Sport Medicine, Vol. 15, No. 3, pp.199-206, 1987.
71. H. P. Von Schroeder, S. D. Kuiper and M. J. Botte, “Osseous anatomy of the scapula,” Clinical Orthpaedics and Related Research, Vol. 383, pp. 131-139, 2001.
72. W. R. Walsh, Repair and regeneration of ligaments, tendons, and joint capsule, Humana Press Inc., New Jersey, 2006.
73. C. G. Rios, R. A. Arciero and A. D. Mazzocca, “Anatomy of the clavicle and coracoid process for reconstruction of the coracoclavicular ligaments,” The American Journal of Sports Medicine, Vol. 35, No. 5, pp. 811-817, 2007.
74. R. S. Costic, J. E. Labriola, M. W. Rodosky and R. E. Debski, “Biomechanical rationale for development of anatomical reconstructions of coracoclavicular ligament after complete acromioclavicular joint dislocations,” The American Journal of Sports Medicine, Vol. 32, No.8, pp. 1929-1936, 2004.
75. ANSYS Release 12.1, ANSYS Inc, 2010.
76. M. Iwamoto, K. Miki and K. H. Yang, “Development of a finite element model of the human shoulder to investigate the mechanical responses and injuries in side impact,” Japan Society Mechanical Engineering International Journal Series, Vol. C 44, No. 4, pp. 1072-1081, 2001.
77. L. U. Bigliani, R. G. Pollock, L. J. Soslowsky, E. L. Flattow, R. J. Pawluk and V. C. Mow, “Tensile properties of the inferior glenohumeral ligament,” Journal of Orthopaedic Research, Vol. 10, No. 2, pp. 187-197, 1992.
78. Y. C. Fung, “Elasticity of soft tissues in simple elongation,” American Journal of Physiology, Vol. 213, pp. 1532-1544, 1967.
79. R. S. Costic, A. Vangura Jr, J. A. Fenwick, M. W. Rodosky and R. E. Debski, “Viscoelastic behavior and structural properties of the coracoclavicular ligaments,” Scandinavian Journal of Medicine and Science in Sports, Vol. 13, pp. 305-310, 2003.
80. K. Fukuda, E. V. Craig, K. N. An, R. H. Cofield and E. Y. Chao, “Biomechanical study of the ligamentous system of the acromioclavicular joint,” The Journal of Bone and Joint Surgery, Vol. 68, pp. 433-440, 1986.
81. R. I. Harris, A. L. Wallace, G. D. Harper, J. A. Goldberg, D. H. Sonnabend and W. R. Walsh, “Structural properties of the intact and the reconstructed coracoclavicular ligament complex,” The American Journal of Sports Medicine, Vol. 28, No. 1, pp. 103-108, 2000.
82. R. E. Debski, I. M. Parsons IV, S. L-Y. Woo and F. H. Fu, “Effect of capsular injury on acromioclavicular joint mechanics,” The Journal of Bone and Joint Surgery, Vol. 83-A, No. 9, pp. 1344-1351, 2001.
83. R. Jari, R. S. Costic, M. W. Rodosky and R. E. Debski, “Biomechanical function of surgical procedures for acromioclavicular joint dislocations,” The Journal of Arthroscopic and Related Surgery, Vol. 20, No. 3, pp. 237-245, 2004.
84. P. Buchler, N. A. Ramaniraka, L. R. Rakotomanana, J. P. Iannotti and A. Farron, “A finite element model of the shoulder: application to the comparison of normal and osteoarthritic joints,” Clinical Biomechanics, Vol. 17, pp. 630-639, 2002.
85. G. E. Luis, C. K. Yong, D. A. Singh, S. Sengupta and D. S. K. Choon, “Acromioclavicular joint dislocation: a comparative biomechanical study of the palmaris-longus tendon graft reconstruction with other augmentative methods in cadaveric models,” Journal of Orthopaedic Surgery and Research, Vol. 2, No. 22, pp. 1-10, 2007.
86. C. A. Jr. Rockwood, D. C. Young, Injuries to the acromioclavicular joint, In: Rockwood Jr. CA, Bucholz,RW, and Heckmen JD (eds.) Rockwood and Green’s fractures in adults, JB Lippincott-Raven, Philadelphia, USA, pp.1341-1413, 1998.
87. J. K. Weaver and H. K. Dunn, “Treatment of acromioclavicular injuries, especially complete acromioclavicular separation,” J Bone Joint Surg Am, Vol. 54, pp. 1187-1194, 1972.
88. R. C. Manske, Postsurgical orthopedic sports rehabilitation: Knee and shoulder, Mosby, Inc., an affiliate of Elsevier Inc., Philadelphia, USA, 2006.
89. A. R. Motamedi, F. T. Blevins, M. G. Willis, T. P. McNally and M. Shahinpoor, “Biomechanics of the coracoclavicular ligament complex and augmentations used in its repair and reconstruction,” Am J Sports Med, Vol. 28, pp. 380-384, 2000.
90. D. M. Weinstein, P. D. McCann, S. J. Mcllveen, E. L. Flatow and L. U. Bigliani, “Surgical treatment of complete acromioclavicular dislocations,” Am J Sports Med, Vol. 23, pp. 324-331, 1995.
91. H. Sano, I. Wakabayashi and E. Itoi, “Stress distribution in the supraspinatus tendon with partial-thickness tears: An analysis using two-dimensional finite element model,” J Shoulder Elbow Surg, Vol. 15,pp. 100-105, 2006.
92. J. S. Neviaser, “Acromioclavicular dislocation treated by transference of the coracoacromial ligament. A long-term follow-up in a series of 112 cases,” Clin Orthop Relat Res, Vol. 58, pp. 57-68, 1968.
93. A. S. Rokito, Y. H. Oh and J. D. Zuckerman, “Modified Weaver-Dunn procedure for acromioclavicular joint dislocations,” Orthopedics, Vol. 27, pp. 21-28, 2004.
94. J. C. Y. Chow, Advanced arthroscopy, In: Rogerson JS(eds.), Acromioclavicular joint arthroscopy and distal clavicle excision, Springer, New York, pp.147-158, 2001.
95. H. G. Pieper, C. B. Rada, H. Krahl and M. Blank, “Anatomic variation of the coracoacromial ligament: a macroscopic and microscopic cadaveric study,” J Shoulder Elbow Surg, Vol. 6, pp. 291-296, 1997.
96. A. V. Deshmukh, G. S. Perlmutter, J. L. Zilberfarb and D. R. Wilson, “Effect of subacromial decompression on laxity of the acromioclaviclar joint: biomechanical testing in a cadaveric model,” J Shoulder Elbow Surg, Vol. 13, pp. 338-343, 2004.
97. M. Bezer, B. Saygi, N. Aydin, F. Kucukdurmaz, G. Ekinci and O. Guven, “Quantification of acromioclavicular reduction parameters after Weaver-Dunn procedure,” Arch Orthop Trauma Surg, Vol. 129, pp. 1017-1024, 2009.
98. C. S. Neer, “Anterior acromioplasty for the chronic impingement syndrome in the shoulder: a preliminary report,” J Bone Joint Surg Am, Vol. 54, pp. 41-50, 1972.
99. H. Ellman, “Arthroscopic subacromial decompression: analysis of one to three year results,” Arthroscopy, Vol. 3, No. 3, pp. 173-181,1987.
100. I. H. Klintberg, U. Svantesson and J. Karlsson, “Long-term patient satisfaction and functional outcome 8-11 years after subacromial decompression, Knee Surgery, Sports Traumatology,” Arthroscopy, Vol. 18, No. 3, pp. 394-403, 2010.
101. S. J. Snyder, Shoulder Arthroscopy, 2nd edition, Lippincott William & Wilkins., Philadelphia, 2003.
102. A. J. Checroun, M. G. Dennis and J. D. Zuckerman, “Open versus arthroscopic decompression for subacromial impingement. A comprehensive review of the literature from the last 25 years,” Bull Hosp Jt Dis, Vol. 57, No. 3, pp. 145-151,1998.
103. D. Buford, T. Mologne, S. McGrath, G. Heinen and S. Snyder, “Midterm results of arthroscopic co-planing of the acromioclavicular joint,” Journal of Shoulder and Elbow Surgery, Vol. 9, No. 6, pp. 498-501, 2000.
104. F. A. Barber, “Long-term results of acromioclavicular joint coplaning,” Arthroscopy, Vol. 22, No. 2, pp. 125-129, 2006.
105. B. W. Fisher, R. M. Gross, J. A. McCarthy and J. S. Arroyo, “Incidence of acromioclavicular joint complication after arthroscopic subacromial decompression,” Arthroscopy: The Journal of Arthroscopic and Related Surgery, Vol. 15, No. 3, pp. 241-248, 1999.
106. M. S. Kuster, P. F. Hales and S. J. Davis, “The effects of arthroscopic acromioplasty on the acromioclavicular joint,” J Shoulder Elbow Surg, Vol. 7, pp. 140-143, 1998.
107. V. R. Patel, D. Singh, P. T. Calvert and J. I. L. Bayley, “Arthroscopic subacromial decompression: Results and factors affecting outcome,” Journal of Shoulder and Elbow Surgery, Vol. 8, Issue 3, pp. 231-237, 1999.
108. R. J. Hawkins, K. D. Plancher, S. R. Saddemi, L. S. Brezenoff and J. T. Moor, “Arthroscopic Subacromial Decompression,” J Shoulder Elbow Surg, Vol. 10, pp. 225-230, 2001.
109. E. L. Severud, C. Ruotolo, D. D. Abbott and W. M. Nottage, “All-arthroscopic versus mini-open rotator cuff repair: A long-term retrospective outcome comparison.” The Journal of Arthroscopic and Related Surgery, Vol. 19, No. 3, pp. 234-238, 2003.
110. I. A. Stine and C. T. Vangsness Jr., “Analysis of the capsule and ligament insertions about the acromioclavicular joint: A cadaveric study,” The Journal of Arthroscopic and Related Surgery, Vol. 25, No. 9, pp. 968-974, 2009.
111. R. D. Rabalais and E. McCarty, “Surgical treatment of symptomatic acromioclavicular joint problems: a systematic review,” Clin Orthop Relat Res, Vol. 455, pp. 30-37, 2007.
112. R. G. Pennington, N. J. Bottomley, D. Neen and H. C. Brownlow, “Radiological features fo osteoarthritis of the acromiclavicular joint and its association with clinical symptoms,” Journal of Orthopaedic Surgery, Vol. 16, No. 3, pp. 300-302, 2008.
113. B. Conteau, P. Mansat, E. Estivalezes, R. Darmana, M. Mansat and J. Egan,“Finite element analysis of the mechanical behavior of a scapula implanted with a glenoid prosthesis,” Clinical Biomechanics, Vol. 16, pp. 566-575, 2001.
114. P. Buchler, N. A. Ramaniraka, L. R. Rakotomanana, J. P. Iannotti and A. Farron, “A finite element model of the shoulder application to the comparison of normal and osteoarthritic joints,” Clinical Biomechanics, Vol. 17, pp. 630-639, 2002.
115. Z. P. Luo, H. C. Hsu, J. J. Grabowski, B. F. Morrey and K. N. An, “Mechanical environment associated with rotator cuff tears,” Journal of Shoulder Elbow Surgery, Vol. 7, No. 6, pp. 616-620, 1998.
116. I. Wakabayashi, E. Itoi, H. Sano, Y. Shibuya, R. Sashi, H. Minagawa and M. Kobayashi, “Mechanical environment of the supraspinatus tendon: A two-dimensional finite element model analysis,” Journal of Shoulder Elbow Surgery, Vol. 12, No. 6, pp. 612-617, 2003.
117. E. B. Mumford, “Acromioclavicular dislocation-a new treatment,” J Bone Joint Surg, Vol. 23, pp. 799-802, 1941.
118. F. B. Gurd, “The treatment 01 complete dislocation 01 the outer end 01 the clavicle,” Ann Surg, Vol. 113, pp. 1094-8, 1941.
119. L. L. Johnson, Shoulder arthroscopy. In: Johnson LL, ed. Diagnostic and surgical arthroscopy, St. Louis, CV Mosby, pp. 1404, 1981.
120. E. L. Flatow, L. U. Bigliani, “Arthroscopic acromioclavicular joint debridement and distal clavicle resection,” Open Tech Orthop, Vol.1, pp. 240–247, 1991.
121. E. L. Flatow, F. A. Cordasco and G. M. McClusky, “Arthroscopic resection of the distal clavicle via a superior portal: a critical quantitative radiographic assessment of bone removal,” Arthroscopy, Vol. 6, pp. 153–154, 1990.
122. L. U. Bigliani, G. P. Nicholson and E. L. Flatow, “Arthroscopic resection of the distal clavicle,” Orthop Clin North Am, Vol. 24, No. 1, pp. 133–141, 1993.
123. J. Esch, L. R. Ozerkis and J. A. Helgager, “Arthroscopic subacromial decompression: results according to the degree of rotator cuff tear,” Arthroscopy, Vol. 4, pp. 241–249, 1988.
124. B. S. Tolin and S. J. Snyder, “Our technique for the arthroscopic Mumford procedure,” Orthop Clin North Am, Vol. 24, pp. 143–151, 1993.
125. J. F. Meyers, Arthroscopic debridement of the acromioclavicular joint and distal clavicle resection, In: McGinty JB, ed. Operative arthroscopy, New York, Raven Press, pp. 557–560, 1991.
126. N. J. Maki, “Arthroscopic resection of the acromioclavicular joint: a new two portal technique,” The 16th Annual Meeting of the Arthroscopy Association of North America, San Diego, CA, 1997.
127. E. L. Flotow, X. A. Duralde, G. P. Nicholson, R. G. Pollock and L. U. Bigliani, “Arthroscopic resection of the distal clavicle with a superior approach,” Journal of Shoulder and Elbow Surgery Board of Trustees, Vol. 4, pp. 41-50, 1995.
128. G. N. Lervick, “Direct Arthroscopic Distal clavicle Resection: A Technical Review,” The Iowa Orthopaedic Journal, Vol. 25, pp. 149-156.
129. B. Chen, Q. Yuan, X. Wu and J. Fan, “Strain Distribution and Strength of Round-Hole Fiber-Reinforced Structure of Insect Cuticle,” Advanced Science Letters, Vol. 4, pp. 2326–2330, 2011.
130. C. Liu, C. Wang, C. Chen and C. Lo, “Evaluation of Unicompartmental Knee Arthroplasy Using a Finite Element Method,” Advanced Science Letters, Vol. 4, pp. 508–511, 2011.
131. D. Gao, H. Zheng and Y. Gao, “Estimation Models for Robot-Assisted Needle Insertion,” Advanced Science Letters, Vol. 4, pp. 2643–2648, 2011.
132. J. Ren, X. Li and H. Liu, “Finite Element Analysis of New Inner Three-Ring Reducer Based on ANSY Workbench,” Advanced Science Letters, Vol. 4, pp. 2798–2801, 2011.
133. J. L. Franklin, W. P. Barrett, S. E. Jackins and Matsen, “Glenoid loosening in total shoulder arthroplsty. Association with rotator cuff deficiency,” J Arthroplasty, Vol. 3, No. 1, pp. 39-46, 1988.
134. J. D. Zuckerman, A. J. Scott and M. A. Gallapher, “Hemiarthroplasty for cuff tear arthroplasty,” J shoulder and Elbow Surg, Vol. 9, No. 3, pp. 167-172, 2000.
135. E. Lettinn, S. Copeland and J. English, “The Stanmore total shoulder arthroplasty,” J Bone Joint Surg, Vol. 64B, No. 1, pp. 47-51, 1982.
136. J. McELwain and E. English, “The early result of porous coated total shoulder arthroplasty,” Clin Orthop, Vol. 218, pp. 217-224, 1987.
137. J. M. Fenlin, “Total shoulder glenohumeral joint replacement,” Orthop Clin North Am, Vol. 6, pp. 565-583, 1975.
138. L. A. Brostrom, R. Wallenstein, E. Olsson and D. Anserson, “The Kessel prosthesis in total shoulder arthroplasty. A five years experience,” Clin Orthop, Vol. 277, pp. 155-160, 1992.
139. R. H. Cofield, Result and complications of Shoulder Arthroplasty. In Reconstruction surgery of the Joint, 2nd ed., edited by Morrey Fundation, B. F. Mayo, pp. 773-787, 1996.
140. P. Boileau, D. J. Watkinson, A. M. Hatzidakis and F. Balg, Nice Shoulder Course, Reverse Prosthesis design, Rationale and Biomechanics. In Reverse Shoulder arthroplasty, Clinical results-complications-Revision, edited by G. Walch, Sauramps medical, Paris, France, pp. 25-55, 2006.
141. P. M. Grammont and E. Baulot, “Delta Shoulder Prosthesis for Rotator cuff Rupture,” Orthopedics, Vol. 16, pp. 65-68, 1993.
142. L. Neyton, P. Guard and P. Boileau, Results of Reverase Shoulder arthroplasty in Proximal Humerus Fracture Sequelae. In Nice Shoulder Course, Reverse Prosthesis design, Rationale and Biomechanics. In Reverse Shoulder arthroplasty, Clinical results-complications-Revision, edited by G. Walch, Sauramps medical, Paris, France, pp. 81-101, 2006..
143. C. Lévigne, P. Boileau, L. Favard, P. Garaud, D. Molé, F. Sirveaux and G. Walsh, “Scapular notching in reverse shoulder Arthroplasty,” Journal of Shoulder and Elbow Surgery, Vol. 17, No. 6, pp. 925-935, 2008.
144. T. B. Edwards, G. J. Trappey, C. Riley, D. P. O'Connor, H. A. Elkousy and G. M. Gartsman, “Inferior tilt of the glenoid component does not decrease scapular notching in reverse shoulder arthroplasty: results of a prospective randomized study,” J Shoulder Elbow Surg, 2011.
145. L. B. Kempton, M. Balasubramaniam, E. Ankerson and J. M. Wiater, “A radiographic analysis of the effects of glenosphere position on scapular notching following reverse total shoulder arthroplasty,” J Shoulder Elbow Surg, Vol. 20, No. 6, pp. 968-974. 2011.
146. P. Boileau, G. Moineau, Y. Roussanne and K. O'Shea, “Bony increased-offset reversed shoulder arthroplasty: minimizing scapular impingement while maximizing glenoid fixation,” Clin Orthop Relat Res, Vol. 469, No. 9, pp. 2558-2267, 2011.
147. P. Boileau, C. Chuinard, Y. Roussanne, L. Neyton and C. Trojani, “Modified latissimus dorsi and teres major transfer through a single delto-pectoral approach for external rotation deficit of the shoulder as anisolated procedure or with a reverse arthroplasty,” J Shoulder Elbow Surg, Vol. 16, No. 6, pp. 671-682, 2007.
148. C. Gerber, S. D. Pennington, E. J. Lingenfelter and A. Sukthankar, “Reverse Delta-III total shoulder replacement combined with latissimus dorsi transfer, A preliminary report,” J Bone Joint Surg Am, Vol. 89, No. 5, pp. 940-947, 2007.
149. A. Castagna, A. Bishof and J. Agneskirchner, “Comparison of clinical outcomes of reverse shoulder arthroplasty with glenospheres of different designs, diameters and materials,” E-poster SECEC/ESSSE 2011, Lyon, France, 2011.
150. B. S. Werner, J. J. Stehle and D. Böhm, “Revision to reverse shoulder arthroplasty with retention of the humeral component – solutions and pitfalls,” E-Poster, SECEC/ESSSE 2011, Lyon, France, 2011.
151. P.Boileau, D. J. Watkinson, A. M. Hatzidakis and F. Balg, “Grammont reverse prosthesis: design, rationale, and biomechanics,” J Shoulder Elbow Surg, Vol. 14, pp. 147S-61S, 2005.
152. P. Boileau, D. J. Watkinson, A. M. Hatzidakis and I. Hovorka, “The Grammont reverse shoulder prosthesis: results in cuff tear arthritis, fracture sequelae, and revision arthroplasty,” J Shoulder Elbow Surg, Vol. 15, pp.527-540, 2006.
153. C. Chebli, P. Huber, J. Watling, A. Bertelsen, R. T. Bicknell and F. Matsen, “Factors affecting fixation of the glenoid component of a reverse total shoulder prosthesis,” J Shoulder Elbow Surg, Vol. 17, pp 323-327, 2008.
154. J. Chou, S. F. Malak, I. A. Anderson, T. Astley and P. C. Poon PC, “Biomechanical evaluation of different designs of glenospheres in the SMR reverse total shoulder prosthesis: range of motion and risk of scapular notching,” J Shoulder Elbow Surg, Vol. 18, pp. 354-9, 2009.
155. C. Delloye, D. Joris, A. Colette, A. Eudier and J. Dubuc, “Mechanical complications of total shoulder inverted prostheses,” Rev Chir Orthop, Vol. 88, pp. 410-414, 2002.
156. G. N. Drake, D. P. O’Connor and T. B. Edwards, “Indications for reverse total shoulder arthroplasty in rotator cuff disease,” Clin Orthop Relat Res, Vol. 468, pp.1526-33, 2010.
157. L. Favard, F. Sirveaux, R. Bicknell, C. Levigne, P. Garaud and D. Mole, The multicenter study methodology and presentation, In Reverse shoulder arthroplasty, clinical results-complications-revision, edited by G. Walch, Sauramps Medical, Paris, France, pp. 13-23, 2006.
158. M. Frankle, S. Siegal, D. Pupello, A. Saleem, M. Mighell and M. Vasey, “The reverse shoulder prosthesis for glenohumeral arthritis associated with severe rotator cuff deficiency: A minimum two-year follow-up study of sixty patients,”J Bone Joint Surg Am, Vol. 87, pp.1697-1705, 2005.
159. S. Gutierrez, C. A. Comiskey, Z. P. Luo and D. R. Frankel, “Range of impingement-free abduction and adduction deficit after reverse shoulder arthroplasty: Hierarchy of surgical and implant-designrelated factors,” J Bone Joint Surg Am, Vol. 90, pp. 2606-2015, 2008.
160. S. Gutierrez, R. M. Greiwe, M. A. Frankle, S. Siegal and W. E. III. Lee, “Biomechanical comparison of component position and hardware failure in the reverse shoulder prosthesis,” J Shoulder Elbow Surg, Vol. 16, pp. S9-S12, 2007.
161. S. Gutierrez, M. Walker, M. Willis, D. R. Pupello and M. A. Frankle, “Effects of tilt and glenosphere eccentricity on baseplate/bone interface forces in a computational model validated by a mechanical model of reverse shoulder arthroplasty,” J Shoulder Elbow Surg, Vol. 20, pp. 732-9, 2011.
162. M. Harman, M. Frankle, M. Vasey, S. Banks, “Initial glenoid component fixation in reverse total shoulder arthroplasty: a biomechanical evaluation,” J Shoulder Elbow Surg, Vol. 14, pp. 162-167, 2005.
163. M. S. Kowalsky, L. M. Galatz, D. S. Shia, S. Karen and J. D. Keener, “The relationship between scapular notching and reverse shoulder arthroplasty prosthesis design,” J Shoulder Elbow Surg, Vol. 20, pp. 1-12, 2011.
164. C. L_evigne, P. Boileau, L Favard, P. Garaud, D. Mole and F. Sirveaux, Scapular notching, In Reverse shoulder arthroplasty,clinical results- complications -revision, Sauramps Medical, Paris, France, pp. 353-72, 2006.
165. D. Mole, G. Navez, P. Garaud, Reverse shoulder prosthesis: Problems related to the glenoid. In Reverse shoulder arthroplasty, clinical results-complications-revision, edited by G. Walch, Sauramps Medical, Paris, France, pp. 289-301, 2006.
166. R.W. Nyffeler, C. M. Werner and C. Gerber, “Biomechanical relevance ofglenoid component positioning in the reverse Delta III total shoulder prosthesis,” J Shoulder Elbow Surg, Vol. 14, pp. 524-528, 2005.
167. B.O. Parsons, K. I. Gruson, K. J. Accousti, R. A. Klug and E. L. Flatow, “Optimal rotation and screw positioning for initial glenosphere baseplate fixation in reverse shoulder arthroplasty,” J Shoulder Elbow Surg, Vol. 18, pp. 886-91, 2009.
168. C. Roche, P. H. Flurin, T. Wright, L. A. Crosby, M. Mauldina, J. D. Zuckerman, “An evaluation of the relationships between reverseshoulder design parameters and range of motion, impingement, and stability,” J Shoulder Elbow Surg, Vol. 18, pp. 734-41, 2009.
169. R. W. Simovitch, M. A. Zumstein, E. Lohri, N. Helmy and C. Gerber, “Predictors of scapular notching in patients managed with the Delta III reverse total shoulder replacement,” J Bone Joint Surg Am, Vol. 89, pp. 588-600, 2007.
170. F. Sirveaux, L. Favard L, D. Oudet, D. Huquet, G. Walch and D. Mole, “Grammont inverted total shoulder arthroplasty in the treatment of glenohumeral osteoarthritis with massive rupture of the cuff,” J Bone Joint Surg Br, Vol. 86, pp. 388-95, 2004.
171. G. Walch, B. Wall, F. Mottier, Complications and revision of the reverse shoulder prosthesis, In Reverse shoulder arthroplasty, clinical results-complications-revision, edited by G. Walch, Sauramps Medical, Paris, France, pp. 335-52, 2006.
172. G. Walch, A. A. Young, B. Melis, D. Gazielly, M. Loew and P. Boileau, “Results of a convex-back cemented keeled glenoid component inprimary osteoarthritis: multicenter study with a follow-up greater than5 years,” J Shoulder Elbow Surg, Vol. 20, pp. 385-394, 2011.
173. B. Wall, L. Nove-Josserand, D. P. O’Connor, T. B. Edwards, G.Walch, “Reverse total shoulder arthroplasty: a review of results according toetiology,” J Bone Joint Surg Am, Vol. 89, pp. 1476-85, 2007.
174. C. M. Werner, P. A. Steinmann, M. Gilbart and C. Gerber, “Treatment of painful pseudoparesis due to irreparable rotator cuff dysfunction with the Delta III reverse-ball-and-socket total shoulder prosthesis,” J Bone Joint Surg Am, Vol. 87, pp. 1476-1486, 2005.
175. C. Wierks, L. Richard, J. H. Skolasky and E. G. McFarland, “Reverse total shoulder replacement: Intraoperative and early postoperative complications,” Clin Orthop Relat Res, Vol. 467, pp. 225-234, 2009.
176. L. F. Wilde, D. Poncet, B. Middernacht and A. Ekelund, “Prosthetic overhang is the most effective way to prevent scapular conflict in a reverse total shoulder prosthesis,” Acta Orthop, Vol. 81, pp. 719-726, 2010.
177. M. A. Zumstein, M. Pinedo, J. Old and P. Boileau, “Problems, complications, reoperation, and revisions in reverse total shoulder arthroplasty: A systematic review,” J Shoulder Elbow Surg, Vol. 20, pp. 146-157, 2011.